The consensus algorithm is the core mechanism of blockchain and is used to ensure data consistency among blockchain nodes. The PBFT consensus algorithm is widely used in alliance chains because it is resistant to Byzantine errors. However, the present PBFT (Practical Byzantine Fault Tolerance) still has issues with master node selection that is random and complicated communication. The IBFT consensus technique, which is enhanced, is proposed in this study and is based on node trust value and BLS (Boneh-Lynn-Shacham) aggregate signature. In IBFT, multi-level indicators are used to calculate the trust value of each node, and some nodes are selected to take part in network consensus as a result of this calculation. The master node is chosen from among them based on which node has the highest trust value, it transforms the BLS signature process into the information interaction process between nodes. Consequently, communication complexity is reduced, and node-to-node information exchange remains secure. The simulation experiment findings demonstrate that the IBFT consensus method enhances transaction throughput rate by 61% and reduces latency by 13% when compared to the PBFT algorithm.
order to increase the level of security, as this system encrypts the secret image before sending it through the internet to the recipient (by the Blowfish method). As The Blowfish method is known for its efficient security; nevertheless, the encrypting time is long. In this research we try to apply the smoothing filter on the secret image which decreases its size and consequently the encrypting and decrypting time are decreased. The secret image is hidden after encrypting it into another image called the cover image, by the use of one of these two methods" Two-LSB" or" Hiding most bits in blue pixels". Eventually we compare the results of the two methods to determine which one is better to be used according to the PSNR measurs
Abstract: Data mining is become very important at the present time, especially with the increase in the area of information it's became huge, so it was necessary to use data mining to contain them and using them, one of the data mining techniques are association rules here using the Pattern Growth method kind enhancer for the apriori. The pattern growth method depends on fp-tree structure, this paper presents modify of fp-tree algorithm called HFMFFP-Growth by divided dataset and for each part take most frequent item in fp-tree so final nodes for conditional tree less than the original fp-tree. And less memory space and time.
This paper focuses on developing a self-starting numerical approach that can be used for direct integration of higher-order initial value problems of Ordinary Differential Equations. The method is derived from power series approximation with the resulting equations discretized at the selected grid and off-grid points. The method is applied in a block-by-block approach as a numerical integrator of higher-order initial value problems. The basic properties of the block method are investigated to authenticate its performance and then implemented with some tested experiments to validate the accuracy and convergence of the method.
In this paper, we present new algorithm for the solution of the nonlinear high order multi-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of multi- point boundary value problems.
Most recognition system of human facial emotions are assessed solely on accuracy, even if other performance criteria are also thought to be important in the evaluation process such as sensitivity, precision, F-measure, and G-mean. Moreover, the most common problem that must be resolved in face emotion recognition systems is the feature extraction methods, which is comparable to traditional manual feature extraction methods. This traditional method is not able to extract features efficiently. In other words, there are redundant amount of features which are considered not significant, which affect the classification performance. In this work, a new system to recognize human facial emotions from images is proposed. The HOG (Histograms of Or
... Show MoreThe effect of internal acoustic excitation on the leading-edge, separated boundary layers and the aerodynamic performance of NACA23015 cross section airfoil are examined as a function of excitation location with ranging frequency range (50-400) Hz of the introduced acoustic. Tests are separately conducted in two sections, open type wind tunnels at the Reynolds number of 3.3x105 for measurement at angle of attack (0, 3, 6, 9 &12) deg. and 3x104 for the visualization at angle of attack (12) deg. based on the airfoil chord. Results indicated that the excitation frequency and the excitation location are the key parameters to alter the flow properties and thus to improve the aerodynamic performance. The most effective excitation frequency
... Show MoreIn this article, we aim to define a universal set consisting of the subscripts of the fuzzy differential equation (5) except the two elements and , subsets of that universal set are defined according to certain conditions. Then, we use the constructed universal set with its subsets for suggesting an analytical method which facilitates solving fuzzy initial value problems of any order by using the strongly generalized H-differentiability. Also, valid sets with graphs for solutions of fuzzy initial value problems of higher orders are found.
The Wang-Ball polynomials operational matrices of the derivatives are used in this study to solve singular perturbed second-order differential equations (SPSODEs) with boundary conditions. Using the matrix of Wang-Ball polynomials, the main singular perturbation problem is converted into linear algebraic equation systems. The coefficients of the required approximate solution are obtained from the solution of this system. The residual correction approach was also used to improve an error, and the results were compared to other reported numerical methods. Several examples are used to illustrate both the reliability and usefulness of the Wang-Ball operational matrices. The Wang Ball approach has the ability to improve the outcomes by minimi
... Show MoreIdentification of complex communities in biological networks is a critical and ongoing challenge since lots of network-related problems correspond to the subgraph isomorphism problem known in the literature as NP-hard. Several optimization algorithms have been dedicated and applied to solve this problem. The main challenge regarding the application of optimization algorithms, specifically to handle large-scale complex networks, is their relatively long execution time. Thus, this paper proposes a parallel extension of the PSO algorithm to detect communities in complex biological networks. The main contribution of this study is summarized in three- fold; Firstly, a modified PSO algorithm with a local search operator is proposed
... Show MoreThe research aims to determine the required rate of return according to the Fama and French five-factor model, after strengthening it by adding the indebtedness factor to build the Fama and French six-factor model FF6M-DLE. The effect of the indebtedness factor on the company's profitability and the real value of the ordinary shares calculated according to the (equivalent ascertainment) model and its suitability with the company's situation, and an analysis of the fluctuation between the market value and the real value of the ordinary stocks.