Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficacy of several classification algorithms on four reputable datasets, using both the full features set and the reduced features subset selected through the proposed method. The results show that the feature selection technique achieves outstanding classification accuracy, precision, and recall, with an impressive 97% accuracy when used with the Extra Tree classifier algorithm. The research reveals the promising potential of the feature selection method for improving classifier accuracy by focusing on the most informative features and simultaneously decreasing computational burden.
Background: Gastroesophageal reflux disease, is a quite prevalent gastrointestinal disease, among which gastric content (excluding the air) returns into the oral cavity. Many 0ral manifestations related t0 this disease include tooth wear, dental caries also changes in salivary flow rate and pH. This study was conducted among gastroesophageal reflux disease patients in order to assess tooth wear in relation to salivary flow rate and pH among these patients and the effect of gastroesophageal reflux disease duration on this relation. Materials and methods: One hundred patients participate in this cross-sectional study for both genders and having an age range of 20-40 years old, patients had been endoscopically identified as having gastroeso
... Show MoreIron is one of the abundant elements on earth that is an essential element for humans and may be a troublesome element in water supplies. In this research an AAN model was developed to predict iron concentrations in the location of Al- Wahda water treatment plant in Baghdad city by water quality assessment of iron concentrations at seven WTPs up stream Tigris River. SPSS software was used to build the ANN model. The input data were iron concentrations in the raw water for the period 2004-2011. The results indicated the best model predicted Iron concentrations at Al-Wahda WTP with a coefficient of determination 0.9142. The model used one hidden layer with two nodes and the testing error was 0.834. The ANN model coul
... Show MoreAtrial fibrillation is associates with elevated risk of stroke. The simplest stroke risk assessment schemes are CHADS2 and CHA2DS2-VASc score. Aspirin and oral anticoagulants are recommended for stroke prevention in such patients.
The aim of this study was to assess status of CHADS2 and CHA2DS2-VASc scores in Iraqi atrial fibrillation patients and to report current status of stroke prevention in these patients with either warfarin or aspirin in relation to these scores.
This prospective cross-sectional study was carried out at Tikrit, Samarra, Sharqat, Baquba, and AL-Numaan hospitals from July 2017 to October 2017. CHADS2
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
The aim of this study is to know the effect of different percentages of chitosan added to drinking water on the weight and quality of quail meat, physical anatomy in terms of (the body of the long carcass, the girth of the chest, the length of the thigh bones, the thigh racket, the fullness of the chest), chemical analysis (protein, moisture, fat and ash) and sensory evaluation of quail meat. It was purchased 320 Iraqi-origin birds of quail and one day old. Chicks were randomly distributed to three equal groups' treatments and treated with chitosan and added to the drinking water: the first treatment (0.1 gm./L water only as a control treatment), the second treatment (0.2 gm./L of chitosan was added to the drinking water) and the
... Show MorePerceived Trust of Stakeholders: Predicting the Use of COBIT 2019 to Reduce Information Asymmetry
Flexible pavements are considered an essential element of transportation infrastructure. So, evaluations of flexible pavement performance are necessary for the proper management of transportation infrastructure. Pavement condition index (PCI) and international roughness index (IRI) are common indices applied to evaluate pavement surface conditions. However, the pavement condition surveys to calculate PCI are costly and time-consuming as compared to IRI. This article focuses on developing regression models that predict PCI from IRI. Eighty-three flexible pavement sections, with section length equal to 250 m, were selected in Al-Diwaniyah, Iraq, to develop PCI-IRI relationships. In terms of the quantity and severity of eac
... Show MoreObjective(s): The study aims to evaluating the quality of nursing care provided to children under five years to compare between quality related to type of health sectors; to determine the quality of nursing care and to compare between such care in Baquba Health Care Sector I and II.
Methodology: A descriptive study is carried out for the period from December 15th 2019 to May 1st 2020. A purposive "non- probability" sample, of (60) staff nurse and (60) children is selected. An adopted questionnaire has been selected for the study which consists of three parts. The first part is nurses’ socio-demographic characteristic; the second part is ch
... Show More