Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficacy of several classification algorithms on four reputable datasets, using both the full features set and the reduced features subset selected through the proposed method. The results show that the feature selection technique achieves outstanding classification accuracy, precision, and recall, with an impressive 97% accuracy when used with the Extra Tree classifier algorithm. The research reveals the promising potential of the feature selection method for improving classifier accuracy by focusing on the most informative features and simultaneously decreasing computational burden.
Background: Febrile convulsions are the most frequent type of seizures in children under 6 years of age. Significant percentage of these children will later suffer from recurrence of febrile convulsion.Objectives: To identify the main risk factors for recurrent febrile convulsions in children.Methods: we carried out a case control study involving 89 children those who experienced first attack of febrile convulsions and 92 children with recurrent attack of febrile convulsions. The study was conducted in Central Children Teaching Hospital, Baghdad during the period 2006- 2007. Results: Compared to children with first attack of febrile convulsion, children with recurrent seizures were younger at onset (4- 12m) (67% vs. 44%), mainly male (70
... Show MoreA lack of adequate building maintenance is a significant obstacle faced by governmental hospitals. This paper evaluates factors that negatively impact building-maintenance practices in Iraq. A literature review was conducted to identify factors affecting maintenance. A list of 42 factors affecting hospital-buildings was collected from previous studies and tested using a structured questionnaire distributed to hospital-maintenance experts. During the data analysis, 76 valid questionnaires were used. Based on the respondents’ ratings, the relative-importance index (RII) was used to determine the level of importance of each factor. From the results, it was concluded that twelve factors affect maintenance practices in hospital buildin
... Show Moreلقد شهدت المنطقة العربية تحولات وتغييرات شاملة انطوت على عنصري المفاجأة من حيث التوقيت، وانعكاساتها الاقليمية والدولية، إذ اجتاحت الدول العربية ثورات شعبية احدثت جملة من التغيرات والتبدلات الجيوسياسية، اذ استطاع بعضها اقتلاع انظمة حاكمة كان من غير المتصور ان تتزحزح من مكانها مع تسلحها بكل ادوات العصر من القمع والديكتاتورية الاستبداد، لذا كان للطابع الشعبي السلمي والنجاح الذي تحقق للشعوب العربية كما في م
... Show MoreTourism plays an important role in Malaysia’s economic development as it can boost business opportunity in its surrounding economic. By apply data mining on tourism data for predicting the area of business opportunity is a good choice. Data mining is the process that takes data as input and produces outputs knowledge. Due to the population of travelling in Asia country has increased in these few years. Many entrepreneurs start their owns business but there are some problems such as wrongly invest in the business fields and bad services quality which affected their business income. The objective of this paper is to use data mining technology to meet the business needs and customer needs of tourism enterprises and find the most effective
... Show MoreCredit risk assessment has become an important topic in financial risk administration. Fuzzy clustering analysis has been applied in credit scoring. Gustafson-Kessel (GK) algorithm has been utilised to cluster creditworthy customers as against non-creditworthy ones. A good clustering analysis implemented by good Initial Centres of clusters should be selected. To overcome this problem of Gustafson-Kessel (GK) algorithm, we proposed a modified version of Kohonen Network (KN) algorithm to select the initial centres. Utilising similar degree between points to get similarity density, and then by means of maximum density points selecting; the modified Kohonen Network method generate clustering initial centres to get more reasonable clustering res
... Show MoreIn the petroleum industry, multiphase flow dynamics within the tubing string have gained significant attention due to associated challenges. Accurately predicting pressure drops and wellbore pressures is crucial for the effective modeling of vertical lift performance (VLP). This study focuses on predicting the multiphase flow behavior in four wells located in the Faihaa oil field in southern Iraq, utilizing PIPESIM software. The process of selecting the most appropriate multiphase correlation was performed by utilizing production test data to construct a comprehensive survey data catalog. Subsequently, the results were compared with the correlations available within the PIPESIM software. The outcomes reveal that the Hagedorn and Brown (H
... Show MoreElectrical Discharge Machining (EDM) is a non-traditional cutting technique for metals removing which is relied upon the basic fact that negligible tool force is produced during the machining process. Also, electrical discharge machining is used in manufacturing very hard materials that are electrically conductive. Regarding the electrical discharge machining procedure, the most significant factor of the cutting parameter is the surface roughness (Ra). Conventional try and error method is time consuming as well as high cost. The purpose of the present research is to develop a mathematical model using response graph modeling (RGM). The impact of various parameters such as (current, pulsation on time and pulsation off time) are studied on
... Show MoreThe minimum approaches distance of probing electrons in scanning electron microscope has investigated in accordance to mirror effect phenomenon. The analytical expression for such distance is decomposed using the binomial expansion. With aid of resulted expansion, the distribution of trapped electrons within the sample surface has explored. Results have shown that trapped electron distributes with various forms rather an individual one. The domination of any shape is mainly depend on the minimum approaches distance of probing electrons