Structural, optical, and electrical properties of thin films of CdS : Zn prepared by the solution – growth technique are reported as a function of zinc concentration. CdS are window layers influencing the photovoltaic response of CIS solar cells. The zinc doping concentration was varied from 0.05 to 0.5 wt %, zinc doping apparently increase the band gap and lowers the resistivity. All beneficial optical properties of chemically deposited CdS thin films for application as window material in heterojunction optoelectronic devices are retained. Heat treatment in air at 400 °C for 1h modify crystalline structure, optical, and electrical properties of solution growth deposited CdS : Zn films.
8-hydroxyguanosine (8-OHdG) is considered as an indicator of the oxidative stress. Pro inflammatory cytokines are critical parts of the pathophysiological processes to which treatment can be applied. The aim of this study was to evaluate 8-OHdG and pro inflammatory cytokines concentration in colon carcinoma patients. Blood samples were taken before treatment from 50 incident cases with colon cancer (stage III) admitted for health examination at the Nanakali Hospital in Erbil city with 45 healthy samples of controls with age range between 38-69 years for both groups. All studied parameters were estimated by ELISA. Participants at this study were 95 Participants ranged in age from 38 to 69 years, 50 Participants had been newly diagnosed wi
... Show MoreBackground: Pumpkin seeds are a valuable source of high-quality protein and can be utilized as functional food ingredients due to their properties, such as solubility, foam formation, and stability. This study aims to produce protein isolate and its enzymatic hydrolysates from local pumpkin seeds to study their properties. Methodology: Preparing defatted pumpkin seeds for protein extraction, followed by the enzymes’ hydrolysis using Trypsin and Pepsin enzymes separately and together in two methods. The determination of amino acids and the degree of hydrolysis was conducted; moreover, protein properties were studied, including solubility, emulsifying activity, stability index, foaming capacity, and stability. Results: A protein sample was
... Show MoreAbstract
The current study aims to identify university students' attitudes towards reading and its relationship to some demographic variables in the universities of the Sultanate of Oman. The study sample consisted of (1434) male and female university students from various Omani public and private universities affiliated with the Ministry of Higher Education. The study covered all (11) governorates of Oman. The researcher adopted the descriptive analytical approach. The researcher employed a scale of reading attitudes to collect the needed data. The study results showed that university students' reading attitudes recorded a high degree. The results also showed there are statistically significant differences at th
... Show MoreThe cathodic deposition of zinc from simulated chloride wastewater was used to characterize the mass transport properties of a flow-by fixed bed electrochemical reactor composed of vertical stack of stainless steel nets, operated in batch-recycle mode. The electrochemical reactor employed potential value in such a way that the zinc reduction occurred under mass transport control. This potential was determined by hydrodynamic voltammetry using a borate/chloride solution as supporting electrolyte on stainless steel rotating disc electrode. The results indicate that mass transfer coefficient (Km) increases with increasing of flow rate (Q) where .The electrochemical reactor proved to be efficient in removing zinc and was abl
... Show MoreA finite element is a study that is capable of predicting crack initiation and simulating crack propagation of human bone. The material model is implemented in MATLAB finite element package, which allows extension to any geometry and any load configuration. The fracture mechanics parameters for transverse and longitudinal crack propagation in human bone are analyzed. A fracture toughness as well as stress and strain contour are generated and thoroughly evaluated. Discussion is given on how this knowledge needs to be extended to allow prediction of whole bone fracture from external loading to aid the design of protective systems.