The objective of this work is to design and implement a cryptography system that enables the sender to send message through any channel (even if this channel is insecure) and the receiver to decrypt the received message without allowing any intruder to break the system and extracting the secret information. In this work, we implement an interaction between the feedforward neural network and the stream cipher, so the secret message will be encrypted by unsupervised neural network method in addition to the first encryption process which is performed by the stream cipher method. The security of any cipher system depends on the security of the related keys (that are used by the encryption and the decryption processes) and their corresponding lengths. In our work, there are two types of keys; the first type is the keystream that is adopted by the stream cipher stage with optimal length (length of the keystream greater or equal the message length); and the second key type is the final weights that are obtained from the learning process within the neural network stage, So we can represent our work as an update or development for using the neural network to enhance the security of stream cipher. As a result for a powerful hybrid design, the resulted cipher system provides a high degree of security which satisfies the data confidentially which is the main goal of the most cryptography systems.
Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show MoreThe purpose of our work is to report a theoretical study of electrons tunneling through semiconductor superlattice (SSL). The (SSL) that we have considered is (GaN/AlGaN) system within the energy range of ε < Vo, ε = Vo and ε > Vo, where Vo is the potential barrier height. The transmission coefficient (TN) was determined using the transfer matrix method. The resonant energies are obtained from the T (E) relation. From such system, we obtained two allowed quasi-levels energy bands for ε < VO and one band for ε VO.
In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. A physical model was manufactured to simulate steady state harmonic load applied on a footing resting on sandy soil at different operating frequencies. Total of (84) physical models were performed. The parameters that were taken into consideration include loading frequency, size of footing and different soil conditions. The footing parameters are related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were used. The footings were tested by changing all parameters at the surface and at 50 mm depth below model surface. Meanwhile, the investigated paramete
... Show MoreBackground: War represents a major human crisis; it destroys communities and results in ingrained consequences for public health and well-being
Objective: We set this study to shed light on the public health status in Iraq after the successive wars, sanctions, sectarian conflicts, and terrorism, in light of certain health indicators.
Design: The primary source of data for this analysis comes from the Iraqi Ministry of Health, and The World Health Organization disease surveillance.
Results: Most of the morbidity indicators are high, even those that are relatively declining recently, are still higher than those repor
... Show MoreBackground:-The Modified Alvarado Scoring System (MASS) has been reported to be a cheap and quick diagnostic tool in patients with acute appendicitis. However, differences in diagnostic accuracy have been observed if the scores were applied to various populations and clinical settings.
Objectives:- The purpose of this study was to evaluate the diagnostic value of Modified Alvarado Scoring System in patients with acute appendicitis in our setting.
Methods:-one hundre twenty eight patients ,were included in this study, admitted to Al-Kindy teaching hospital from June 2009 to June 2010. Patients’ age ranged from 8 to 56 years (21±10) they were divided into three groups; paediatrics, child bearing age females & adult males,. MAS
In the last few years, following the relative stability of the political, economic, and security environments, Iraq has embarked on a transformation towards an ambitious program of automation across various sectors. However, this automation program faces numerous challenges, including significant investments in technology and training, addressing social impacts, and combating widespread illiteracy
In this paper, a cognitive system based on a nonlinear neural controller and intelligent algorithm that will guide an autonomous mobile robot during continuous path-tracking and navigate over solid obstacles with avoidance was proposed. The goal of the proposed structure is to plan and track the reference path equation for the autonomous mobile robot in the mining environment to avoid the obstacles and reach to the target position by using intelligent optimization algorithms. Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithms are used to finding the solutions of the mobile robot navigation problems in the mine by searching the optimal paths and finding the reference path equation of the optimal
... Show MoreWhen optimizing the performance of neural network-based chatbots, determining the optimizer is one of the most important aspects. Optimizers primarily control the adjustment of model parameters such as weight and bias to minimize a loss function during training. Adaptive optimizers such as ADAM have become a standard choice and are widely used for their invariant parameter updates' magnitudes concerning gradient scale variations, but often pose generalization problems. Alternatively, Stochastic Gradient Descent (SGD) with Momentum and the extension of ADAM, the ADAMW, offers several advantages. This study aims to compare and examine the effects of these optimizers on the chatbot CST dataset. The effectiveness of each optimizer is evaluat
... Show MoreElectromyography (EMG) is being explored for evaluating muscle activity. For gait analysis, EMG needs to be small, lightweight, portable device, and with low power consumption. The proposed superficial EMG (sEMG) system is aimed to be used in rehabilitation centers and biomechanics laboratories for gait analysis in Iraq.
The system is built using MyoWare, which is controlled by using STM32F100 microcontroller. The sEMG signal is transferred via Bluetooth to the computer (about 30m range) for further processing. MATLAB is used for sEMG signal conditioning. The overall system cost (without computer) is about $80. The proposed system is validated using wired NORAXON EMG using the mean root mean squared metho
... Show More