Smart cities have recently undergone a fundamental evolution that has greatly increased their potentials. In reality, recent advances in the Internet of Things (IoT) have created new opportunities by solving a number of critical issues that are allowing innovations for smart cities as well as the creation and computerization of cutting-edge services and applications for the many city partners. In order to further the development of smart cities toward compelling sharing and connection, this study will explore the information innovation in smart cities in light of the Internet of Things (IoT) and cloud computing (CC). IoT data is first collected in the context of smart cities. The data that is gathered is uniform. The Internet of Things, which enables gadgets to connect with one another mostly without human involvement, is made possible by AI. In line with this, The Ad Hoc Routing Function (ARF) AI computation is used for multi-rule simplification, the use of Adaptive Cloud Computing Virtual Machine Asset Allotment Technique (ACC-VMRA) is advised. To confirm its viability, the applied developments of IoT and CC in smart cities is examined and duplicated. The experiment results show that the recommended enhancement calculation is more productive than other currently used methods.
In this paper, we investigate two stress-strength models (Bounded and Series) in systems reliability based on Generalized Inverse Rayleigh distribution. To obtain some estimates of shrinkage estimators, Bayesian methods under informative and non-informative assumptions are used. For comparison of the presented methods, Monte Carlo simulations based on the Mean squared Error criteria are applied.
A system was used to detect injuries in plant leaves by combining machine learning and the principles of image processing. A small agricultural robot was implemented for fine spraying by identifying infected leaves using image processing technology with four different forward speeds (35, 46, 63 and 80 cm/s). The results revealed that increasing the speed of the agricultural robot led to a decrease in the mount of supplements spraying and a detection percentage of infected plants. They also revealed a decrease in the percentage of supplements spraying by 46.89, 52.94, 63.07 and 76% with different forward speeds compared to the traditional method.
Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and
... Show MoreTight oil reservoirs have been a concerned of the oil industry due to their substantial influence on oil production. Due to their poor permeability, numerous problems are encountered while producing from tight reservoirs. Petrophysical and geomechanical rock properties are essential for understanding and assessing the fracability of reservoirs, especially tight reservoirs, to enhance permeability. In this study, Saadi B reservoir in Halfaya Iraqi oil field is considered as the main tight reservoir. Petrophysical and geomechanical properties have been estimated using full-set well logs for a vertical well that penetrates Saadi reservoir and validated with support of diagnostic fracture injection test data employing standard equations
... Show MoreLean Six Sigma methodologies and Ergonomics principles are the main pillars of this work given their importance in the implementation of continuous improvement in assembly workstations design. When looking at the introduction of the Ergonomics that has been affected by the integration of the Lean and Six Sigma for improvements, it is necessary to understand why these methodologies belong to each other and how they can be handled in the industrial field. The aim of the work seeks towards the impact of analyzing the integration of the basics tools of Lean and Six Sigma that enhanced Ergonomics highlighted the importance of using the priority matrix in the selection of the priority criteria. Two models of a system based on
... Show MoreThe Internet of Things (IoT) is an expanding domain that can revolutionize different industries. Nevertheless, security is among the multiple challenges that it encounters. A major threat in the IoT environment is spoofing attacks, a type of cyber threat in which malicious actors masquerade as legitimate entities. This research aims to develop an effective technique for detecting spoofing attacks for IoT security by utilizing feature-importance methods. The suggested methodology involves three stages: preprocessing, selection of important features, and classification. The feature importance determines the most significant characteristics that play a role in detecting spoofing attacks. This is achieved via two techniques: decision tr
... Show MoreVerbal Communication is linked with the social event no matter how different Communities in their cultures and styles of living and it's intuitions and political systems remain involved in its need . It is a dialogue , a pillar of human Communication , all Communication process conditional on the where a bouts of the shrine and the cycle of words . Semiotics is based on two principles important to Communicate : one : offer intended to report to the speaker . And the other : The recipient of the message a (know led gment of this intent . And learn to measure intent rely on two types of units ; first is the evidence for which is available for reporting the intent and the other : Signals . semiotics Communicate evidence bother as a channel
... Show More