A calculation have been carried out for determination some of the spectroscopic properties of Hydrogen Iodide HI molecules such as, the intensity of the absorption spectrum as a function of the variation of the temperature ranging from 10 to 1000 K. This study shows that the populations and hence intensity of the molecule increased as the temperature increased. Another determination of the maximum rotational quantum number Jmax of N2 , CO , BrF AgCl and HI molecules has been carried out.
Indium Antimonide (InSb) thin films were grown onto well cleaned glass substrates at substrate temperatures (473 K) by flash evaporation. X-ray diffraction studies confirm the polycrystalline of the films and the films show preferential orientation along the (111) plane .The particle size increases with the increase of annealing time .The transmission spectra of prepared samples were found to be in the range (400-5000 cm-1 ) from FTIR study . This indicates that the crystallinity is improved in the films deposited at higher annealing time.
The ground state properties including the density distributions of the neutrons, protons and matter as well as the corresponding root mean square (rms) radii of proton-rich halo candidates 8B, 12N, 23Al and 27P have been studied by the single particle Bear– Hodgson (BH) wave functions with the two-body model of (core+p). It is found that the rms radii of these proton-rich nuclei are reproduced well by this model and the radial wave functions describe the long tail of the proton and matter density distributions. These results indicate that this model achieves a suitable description of the possible halo structure. The plane wave Born approximation (PWBA) has been used to compute the elastic charge form factors.
The aim of this work is studying the binary system ??'??? Ni?)with two ratios (y=36,80) by using casting method for preparing the samples.Magnetic and Mechanical properties have been studidt different httrea^nttem^rature.All the alloys were found a ferromagnetic behavior and sensitive to the heat treatment. Best properties were found at the heat treatment 1100 C°.A significant different results were found above 1100C° for lower magnetic and mechanical values. This is possibly due to the change on the degree of magnetic moment orders, in which most of the moments are started to remove from coupled ferromagnetically.?
The aim of this research is to study the optical properties of carbon-magnesium plasma resulting from arc discharge with explosive wire technique, where the energy gap of each of carbon and magnesium and the carbon-magnesium bond for three values of the wire exploding current (50,75,100 amperes) was studied. It was found that the energy gap for each of carbon and magnesium decreases with increasing the current, the X-ray diffraction of magnesium and the carbon-magnesium suspension was studied, and FTIR of the carbon-magnesium suspended carbon was studied for three values of the exploding current (50, 75, 100 amperes) and the type of bonds for carbon and magnesium was determined. To ob
Films of pure polystyrene (ps) and doped by bromothymol blue material with percentages(4%) prepared by using casting technique in room temperature , the absorption and transmission spectra has been recorded in the wavelength rang (200-900)nm and calculated refractive index , reflectivity, real and imaginary parts of dielectric constant and extinction coefficient . this study has been done by recording the absorption and transmission spectra by using spectrophotometer .
The ligand 2-[1-(1H-indol-3-yl)ethylimino) methyl]naphthalene-1-ol, derived from 1-hydroxy-2-naphthaldehyde and 2-(1H-indol-3-yl)ethylamine, was used to produce a new sequence of metal ions complexes. Thus ligand reactions with NiCl2.6H2O, PdCl2, FeCl3.6H2O and H2PtCl6.6H2O were sequentially made to collect mono-nuclear Ni(II), Pd(II), Fe (III), and Pt(IV). (IR or FTIR), Ultraviolet Reflective (UV–visible), Mass Spectra analysis, Bohr-magnetic (B.M.), metal content, chloride content and molar conductivity have been the defining features of the composites. The Fe(III) and Pt(IV) complexes have octahedral geometries, while the Ni(II) complex has tetra
... Show MoreThe electrical properties of polycrystalline cadmium telluride thin films of different thickness (200,300,400)nm deposited by thermal evaporation onto glass substrates at room temperature and treated at different annealing temperature (373, 423, 473) K are reported. Conductivity measurements have been showed that the conductivity increases from 5.69X10-5 to 0.0011, 0.0001 (?.cm)-1 when the film thickness and annealing temperature increase respectively. This increasing in ?d.c due to increasing the carrier concentration which result from the excess free Te in these films.
Thin films of GexS1-x were fabricated by thermal evaporating under vacuum of 10-5Toor on glass substrate. The effect of increasing of germanium content (x) in sulfide films on the electrical properties like d.c conductivity (σDC), concentration of charge carriers (nH) and the activation energy (Ea) and Hall effect were investigated. The measurements show that (Ea) increases with the increasing of germanium content from 0.1to0.2 while it get to reduces with further addition, while charge carrier density (nH) is found to decrease and increase respectively with germanium content. The results were explained in terms of creating and eliminating of states in the band gap