Medical images play a crucial role in the classification of various diseases and conditions. One of the imaging modalities is X-rays which provide valuable visual information that helps in the identification and characterization of various medical conditions. Chest radiograph (CXR) images have long been used to examine and monitor numerous lung disorders, such as tuberculosis, pneumonia, atelectasis, and hernia. COVID-19 detection can be accomplished using CXR images as well. COVID-19, a virus that causes infections in the lungs and the airways of the upper respiratory tract, was first discovered in 2019 in Wuhan Province, China, and has since been thought to cause substantial airway damage, badly impacting the lungs of affected persons. The virus was swiftly gone viral around the world and a lot of fatalities and cases growing were recorded on a daily basis. CXR can be used to monitor the effects of COVID-19 on lung tissue. This study examines a comparison analysis of k-nearest neighbors (KNN), Extreme Gradient Boosting (XGboost), and Support-Vector Machine (SVM) are some classification approaches for feature selection in this domain using The Moth-Flame Optimization algorithm (MFO), The Grey Wolf Optimizer algorithm (GWO), and The Glowworm Swarm Optimization algorithm (GSO). For this study, researchers employed a data set consisting of two sets as follows: 9,544 2D X-ray images, which were classified into two sets utilizing validated tests: 5,500 images of healthy lungs and 4,044 images of lungs with COVID-19. The second set includes 800 images, 400 of healthy lungs and 400 of lungs affected with COVID-19. Each image has been resized to 200x200 pixels. Precision, recall, and the F1-score were among the quantitative evaluation criteria used in this study.
Coronavirus 2019 (COVID-19) pandemic led to a massive global socio-economic tragedy that has impacted the ecosystem. This paper aims to contextualize urban and rural environmental situations during the COVID-19 pandemic in the Middle East and North Africa (MENA) Region.
An online survey was conducted, 6770 participants were included in the final analysis, and 64% were females. The majority of the participants were urban citizens (74%). Over 50% of the urban residents significantly (
The aim of this scientific paper is to highlight the effective role of women working in economic development, especially those working in the entrepreneurial sector, which we see as encouraging at the macro-economic level and at the personal level, by highlighting their potential to help them enter the private labour market, value them and empower their role in the economic arena in order to win this bet to become productive and effective workers at all levels.
Through this paper, we will try to highlight the role of Algerian women's contribution to economic development through access to the world of entrepreneurship, and we will also try to find statistics on their success levels at the local and interna
... Show MoreThe present study investigates the realization and significance of textual themes in the organizational structure of M.A theses and Ph.D. dissertations, namely: the abstracts, introductions and conclusions, since in such parts the students depend on their own expressions, styles and constructions to express different viewpoints, plans, inferences, etc. The study also investigates the similarities and differences between M.A theses and Ph.D. dissertations concerning the use of textual themes;it sets out to conduct a detailed analysis of textual themes used in such texts. In conducting such an analysis, the study adopts Halliday's (1994) approach of textual themes. The results of such an analysis have clearly shown that, in spite of the di
... Show MoreThe current research aims to provide a conceptual and applied frame on the subject of multi- level analysis in the research of business administration. The research tries to address some of the problems that befall the preparation of research and studies at the Arab level and local level, where the unity of theory and measurement and analysis, as well as clarify the various types of conceptual constructs and give researchers the ability to distinguish different models related to the level of analysis. On the other hand, this research provides an example of
... Show MoreMultipole mixing ratios for gamma transition populated in from reaction have been studied by least square fitting method also transition strength ] for pure gamma transitions have been calculated taking into account the mean life time for these levels .
Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show MoreThin films of GexS1-x were fabricated by thermal evaporating under vacuum of 10-5Toor on glass substrate. The effect of increasing of germanium content (x) in sulfide films on the electrical properties like d.c conductivity (σDC), concentration of charge carriers (nH) and the activation energy (Ea) and Hall effect were investigated. The measurements show that (Ea) increases with the increasing of germanium content from 0.1to0.2 while it get to reduces with further addition, while charge carrier density (nH) is found to decrease and increase respectively with germanium content. The results were explained in terms of creating and eliminating of states in the band gap
Thin films of ZnSxSe1-x with different sulfide content(x)
(0, 0.02, 0.04, 0.06, 0.8, and 0.1), thickness (t) (0.3, 0.5, and 0.7 μm) and annealing temperature (Ta) (R.T 373 and 423K) were fabricated by thermal evaporating under vacuum of 10-5 Toor on glass substrate. The results show that the increasing of sulfide content (x)and annealing temperature lead to decrease the d.c conductivity σDC of and concentration of charge carriers (nH) but increases the activation energy (Ea1,Ea2), while the increasing of t increases σDC and nH but decrease (Ea1,Ea2). The results were explained in different terms
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More