Secure storage of confidential medical information is critical to healthcare organizations seeking to protect patient's privacy and comply with regulatory requirements. This paper presents a new scheme for secure storage of medical data using Chaskey cryptography and blockchain technology. The system uses Chaskey encryption to ensure integrity and confidentiality of medical data, blockchain technology to provide a scalable and decentralized storage solution. The system also uses Bflow segmentation and vertical segmentation technologies to enhance scalability and manage the stored data. In addition, the system uses smart contracts to enforce access control policies and other security measures. The description of the system detailing and provide an analysis of its security and performance characteristics. The resulting images were tested against a number of important metrics such as Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error (MSE), bit error rate (BER), Signal-to-Noise Ratio (SNR), Normalization Correlation (NC) and Structural Similarity Index (SSIM). Our results showing that the system provides a highly secure and scalable solution for storing confidential medical data, with potential applications in a wide range of healthcare settings.
Heuristic approaches are traditionally applied to find the optimal size and optimal location of Flexible AC Transmission Systems (FACTS) devices in power systems. Genetic Algorithm (GA) technique has been applied to solve power engineering optimization problems giving better results than classical methods. This paper shows the application of GA for optimal sizing and allocation of a Static Compensator (STATCOM) in a power system. STATCOM devices used to increase transmission systems capacity and enhance voltage stability by regulate the voltages at its terminal by controlling the amount of reactive power injected into or absorbed from the power system. IEEE 5-bus standard system is used as an example to illustrate the te
... Show MoreIn this work, we carried out an experimental study of thedusty
plasma by taking the dust material Fe3O4 with radius of the any grain
0.1μm - 0.5μm. In experiment we use air in the vacuum chamber
system under different low pressure (0.1-1) Torr. The results
illustrated that the present of dust particles in the air plasma did not
effect on Paschen minimum which is 0.5 without dust and with Fe3O4
dusty grains.
The effect of Fe3O4 dust particles on plasma parameters can be
notice in direct current system in glow discharge region. The plasma
parameters which were studied in this work represent plasma
potential, floating potential,electron saturation current, temperatu
New microphotometer was constructed in our Laboratory Which deals with the determination of Molybdenum (VI) through its Catalysis effect on Hydrogen peroxide and potasum iodide Reaction in acid medium H2SO4 0.01 mM. Linearity of 97.3% for the range 5- 100 ppm. The repeatability of result was better than 0.8 % 0.5 ppm was obtanined as L.U. (The method applied for the determination of Molybdenum (VI) in medicinal Sample (centrum). The determination was compared well with the developed method the conventional method.
Within the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show MoreRegression models are one of the most important models used in modern studies, especially research and health studies because of the important results they achieve. Two regression models were used: Poisson Regression Model and Conway-Max Well- Poisson), where this study aimed to make a comparison between the two models and choose the best one between them using the simulation method and at different sample sizes (n = 25,50,100) and with repetitions (r = 1000). The Matlab program was adopted.) to conduct a simulation experiment, where the results showed the superiority of the Poisson model through the mean square error criterion (MSE) and also through the Akaiki criterion (AIC) for the same distribution.
Paper type:
... Show MoreCompressing the speech reduces the data storage requirements, leading to reducing the time of transmitting the digitized speech over long-haul links like internet. To obtain best performance in speech compression, wavelet transforms require filters that combine a number of desirable properties, such as orthogonality and symmetry.The MCT bases functions are derived from GHM bases function using 2D linear convolution .The fast computation algorithm methods introduced here added desirable features to the current transform. We further assess the performance of the MCT in speech compression application. This paper discusses the effect of using DWT and MCT (one and two dimension) on speech compression. DWT and MCT performances in terms of comp
... Show MoreThis study aimed to incorporate hydroxyapatite nanoparticles (nHA) or amorphous calcium phosphate nanoparticles (nACP) into a self-etch primer (SEP) to develop a simplified orthodontic bonding system with remineralizing and enamel preserving properties.
nHA and nACP were incorporated into a commercial SEP (Transbond™ plus) in 7% weight ratio and compared with the plain SEP as a control. Shear bond strengths (SBS), enamel damage, and adhesive remnant index (ARI) scores were evaluated at 24 h
In this article, a numerical method integrated with statistical data simulation technique is introduced to solve a nonlinear system of ordinary differential equations with multiple random variable coefficients. The utilization of Monte Carlo simulation with central divided difference formula of finite difference (FD) method is repeated n times to simulate values of the variable coefficients as random sampling instead being limited as real values with respect to time. The mean of the n final solutions via this integrated technique, named in short as mean Monte Carlo finite difference (MMCFD) method, represents the final solution of the system. This method is proposed for the first time to calculate the numerical solution obtained fo
... Show More