Preferred Language
Articles
/
bsj-9120
AlexNet-Based Feature Extraction for Cassava Classification: A Machine Learning Approach
...Show More Authors

Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has 350 images. Three fully connected (FC) layers were utilized for feature extraction, namely fc6, fc7, and fc8. The classifiers employed were support vector machine (SVM), k-nearest neighbors (KNN), and Naive Bayes. The study demonstrated that the most effective feature extraction layer was fc6, achieving an accuracy of 90.7% with SVM. SVM outperformed KNN and Naive Bayes, exhibiting an accuracy of 90.7%, sensitivity of 83.5%, specificity of 93.7%, and F1-score of 83.5%. This research successfully addressed the challenges in classifying cassava species by leveraging deep learning and machine learning methods, specifically with SVM and the fc6 layer of AlexNet. The proposed approach holds promise for enhancing plant classification techniques, benefiting researchers, farmers, and environmentalists in plant species identification, ecosystem monitoring, and agricultural management.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Oct 27 2020
Journal Name
Journal Of Mechanics Of Continua And Mathematical Sciences
AUTOMATIC ARABIC KEYWORD EXTRACTION USING LOGISTIC REGRESSION
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Journal Of Research In Medical And Dental Science
The Efficacy of 4% Articaine Infiltration Anesthesia in the Extraction of Mandibular Molars: A Randomized Controlled Study
...Show More Authors

Introduction: Articaine was developed in 1969, with reported advantages which are increased potency, increased duration of its anesthetic effect and superior diffusion through bony tissue. The effectiveness of using 4% articaine infiltration for extraction of mandibular molar teeth in comparison to 2% lidocaine inferior alveolar nerve block is not settled yet. Aim: The aim of this study was to evaluate the effectiveness of using 4% articaine infiltration for extraction of mandibular molars by comparing it to the use of 2% lidocaine inferior alveolar nerve block in terms of success, the volume of local anesthetic agents and the pain experienced during the procedure. Materials and methods: A prospective randomized controlled study included

... Show More
View Publication Preview PDF
Publication Date
Sat Jun 15 2019
Journal Name
Journal Of Baghdad College Of Dentistry
The Efficiency Of Physics Forceps In Comparison To The Conventional Dental Extraction Forceps: A randomized Clinical Trial
...Show More Authors

Background: Tooth extraction is one of the most commonly performed procedures in dentistry. It is usually a traumatic process often resulting in immediate destruction and loss of alveolar bone and surrounding soft tissues. Various instruments have been described to perform atraumatic extractions which can prevent damage to the paradental structures. The physics forceps is one of those innovations in dental extraction technologies that claim to provide an efficient means for atraumatic dental extractions. Materials and method: A randomized clinical trial was conducted to compare the physics forceps with the conventional forceps for the removal of 28 mandibular single rooted teeth under the following parameters: incidence of crown, root, b

... Show More
View Publication
Scopus (3)
Crossref (5)
Scopus Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Smart Flow Steering Agent for End-to-End Delay Improvement in Software-Defined Networks
...Show More Authors

To ensure fault tolerance and distributed management, distributed protocols are employed as one of the major architectural concepts underlying the Internet. However, inefficiency, instability and fragility could be potentially overcome with the help of the novel networking architecture called software-defined networking (SDN). The main property of this architecture is the separation of the control and data planes. To reduce congestion and thus improve latency and throughput, there must be homogeneous distribution of the traffic load over the different network paths. This paper presents a smart flow steering agent (SFSA) for data flow routing based on current network conditions. To enhance throughput and minimize latency, the SFSA distrib

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Fri Jul 01 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
Survey on distributed denial of service attack detection using deep learning: A review
...Show More Authors

Distributed Denial of Service (DDoS) attacks on Web-based services have grown in both number and sophistication with the rise of advanced wireless technology and modern computing paradigms. Detecting these attacks in the sea of communication packets is very important. There were a lot of DDoS attacks that were directed at the network and transport layers at first. During the past few years, attackers have changed their strategies to try to get into the application layer. The application layer attacks could be more harmful and stealthier because the attack traffic and the normal traffic flows cannot be told apart. Distributed attacks are hard to fight because they can affect real computing resources as well as network bandwidth. DDoS attacks

... Show More
View Publication
Publication Date
Wed Mar 08 2023
Journal Name
Sensors
A Critical Review of Remote Sensing Approaches and Deep Learning Techniques in Archaeology
...Show More Authors

To date, comprehensive reviews and discussions of the strengths and limitations of Remote Sensing (RS) standalone and combination approaches, and Deep Learning (DL)-based RS datasets in archaeology have been limited. The objective of this paper is, therefore, to review and critically discuss existing studies that have applied these advanced approaches in archaeology, with a specific focus on digital preservation and object detection. RS standalone approaches including range-based and image-based modelling (e.g., laser scanning and SfM photogrammetry) have several disadvantages in terms of spatial resolution, penetrations, textures, colours, and accuracy. These limitations have led some archaeological studies to fuse/integrate multip

... Show More
View Publication
Scopus (17)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Sun Jun 30 2013
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Extraction of Oil from Eucalyptus Camadulensis Using Water Distillation Method
...Show More Authors

This work was conducted to study the extraction of eucalyptus oil from natural plants (Eucalyptus camaldulensis leaves) using water distillation method by Clevenger apparatus. The effects of main operating parameters were studied: time to reach equilibrium, temperature (70 to100°C), solvent to solid ratio (4:1 to 8:1 (v/w)), agitation speed (0 to 900 rpm), and particle size (0.5 to 2.5 cm) of the fresh leaves, to find the best processing conditions for achieving maximum oil yield. The results showed that the agitation speed of 900 rpm, temperature 100° C, with solvent to solid ratio 5:1 (v/w) of particle size 0.5 cm for 160 minute give the highest percentage of oil (46.25 wt.%). The extracted oil was examined by HPLC.

View Publication Preview PDF
Publication Date
Thu Feb 24 2022
Journal Name
Journal Of Educational And Psychological Researches
Question Asking Skills: Levels, Conditions, Classification, and Types
...Show More Authors

The research aims to know the question asking skills in terms of levels, conditions, classification, and types. The research limited to the literature that dealt with the importance of questioning for students and teachers. The most important term used in the research is the skill (Ryan defined it as "the ability to perform with great efficiency, accuracy, and ease). The results of the research are as follows: 1. the questions asked by the schoolteacher within the assessment of students' learning. 2. Teachers should focus on the lower levels of learning (remembering, understanding and comprehension) and then evaluating students at the higher levels (synthesis and evaluation). 3. Teacher with good knowledge can skillfully use the question

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Self-Localization of Guide Robots Through Image Classification
...Show More Authors

The field of autonomous robotic systems has advanced tremendously in the last few years, allowing them to perform complicated tasks in various contexts. One of the most important and useful applications of guide robots is the support of the blind. The successful implementation of this study requires a more accurate and powerful self-localization system for guide robots in indoor environments. This paper proposes a self-localization system for guide robots.  To successfully implement this study, images were collected from the perspective of a robot inside a room, and a deep learning system such as a convolutional neural network (CNN) was used. An image-based self-localization guide robot image-classification system delivers a more accura

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Al-nahrain Journal Of Science
Image Classification Using Bag of Visual Words (BoVW)
...Show More Authors

In this paper two main stages for image classification has been presented. Training stage consists of collecting images of interest, and apply BOVW on these images (features extraction and description using SIFT, and vocabulary generation), while testing stage classifies a new unlabeled image using nearest neighbor classification method for features descriptor. Supervised bag of visual words gives good result that are present clearly in the experimental part where unlabeled images are classified although small number of images are used in the training process.

View Publication Preview PDF
Crossref (23)
Crossref