Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has 350 images. Three fully connected (FC) layers were utilized for feature extraction, namely fc6, fc7, and fc8. The classifiers employed were support vector machine (SVM), k-nearest neighbors (KNN), and Naive Bayes. The study demonstrated that the most effective feature extraction layer was fc6, achieving an accuracy of 90.7% with SVM. SVM outperformed KNN and Naive Bayes, exhibiting an accuracy of 90.7%, sensitivity of 83.5%, specificity of 93.7%, and F1-score of 83.5%. This research successfully addressed the challenges in classifying cassava species by leveraging deep learning and machine learning methods, specifically with SVM and the fc6 layer of AlexNet. The proposed approach holds promise for enhancing plant classification techniques, benefiting researchers, farmers, and environmentalists in plant species identification, ecosystem monitoring, and agricultural management.
The aim of this research work is to evaluate the use of 980 nm diode laser in clotting the blood
in the bone socket after tooth extraction. The objective is to prevent possible clot dislodgement which is
a defect that may lead to possible infection. A number of rabbits were irradiated using 980nm CW mode
diode laser, 0.86W power output for 9s and 15s exposure time. The irradiated groups were studied
histopathologically in comparison with a control group. Results showed that laser photothermal
coagulation was of benefit in minimizing the possibility of the incidence of postoperative complications.
The formation of the clot reduces the possibility of bleeding and infection.
This study aims to identify the degree of students of Princess Rahma University College owning e-learning skills related to MOODLE as they perceived in the of light Corona crisis. The researchers' questionnaire consisted of (37) items, distributed in three areas of e-learning skills related to the MOODLE on (147) students were chosen randomly. The results of the study showed that the degree of students 'possession of e-learning skills related to the MOODLE was significant. The results also revealed that there were statistically significant differences in the degree of students' possession of electronic learning skills related to the MOODLE due to sex in favor of females. Finally, there were no statistically significant differences in the
... Show MoreA simple and highly sensitive cloud point extraction process was suggested for preconcentration of micrograms amount of isoxsuprine hydrochloride (ISX) in pure and pharmaceutical samples. After diazotization coupling of ISX with diazotized sulfadimidine in alkaline medium, the azo-dye product quantitatively extracted into the Triton X-114 rich phase, dissolved in ethanol and determined spectrophotometrically at 490 nm. The suggested reaction was studied with and without extraction and simple comparison between the batch and CPE methods was achieved. Analytical variables including concentrations of reagent, Triton X-114 and base, incubated temperature, and time were carefully studied. Under the selected opti
... Show MoreLanguage always conveys ideologies that represent an essential aspect of the world we live in. The beliefs and opinions of an individual or community can be organized, interacted with, and negotiated via the use of language. Recent researches have paid attention to bullying as a social issue. They have focused on the psychological aspect of bullying rather than the linguistic one. To bridge this gap, the current study is intended to investigate the ideology of bullying from a critical stylistic perspective. The researchers adopt Jeffries' (2010) critical stylistics model to analyze the data which is five extracts taken from Hunt’s Fish in a Tree (2015). The analysis demonstrates
... Show MoreThe substantial key to initiate an explicit statistical formula for a physically specified continua is to consider a derivative expression, in order to identify the definitive configuration of the continua itself. Moreover, this statistical formula is to reflect the whole distribution of the formula of which the considered continua is the most likely to be dependent. However, a somewhat mathematically and physically tedious path to arrive at the required statistical formula is needed. The procedure in the present research is to establish, modify, and implement an optimized amalgamation between Airy stress function for elastically-deformed media and the multi-canonical joint probability density functions for multivariate distribution complet
... Show MoreDeep Learning Techniques For Skull Stripping of Brain MR Images
General Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k
... Show MoreOne of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p
... Show More