Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has 350 images. Three fully connected (FC) layers were utilized for feature extraction, namely fc6, fc7, and fc8. The classifiers employed were support vector machine (SVM), k-nearest neighbors (KNN), and Naive Bayes. The study demonstrated that the most effective feature extraction layer was fc6, achieving an accuracy of 90.7% with SVM. SVM outperformed KNN and Naive Bayes, exhibiting an accuracy of 90.7%, sensitivity of 83.5%, specificity of 93.7%, and F1-score of 83.5%. This research successfully addressed the challenges in classifying cassava species by leveraging deep learning and machine learning methods, specifically with SVM and the fc6 layer of AlexNet. The proposed approach holds promise for enhancing plant classification techniques, benefiting researchers, farmers, and environmentalists in plant species identification, ecosystem monitoring, and agricultural management.
This paper proposes a new approach, of Clustering Ultrasound images using the Hybrid Filter (CUHF) to determine the gender of the fetus in the early stages. The possible advantage of CUHF, a better result can be achieved when fuzzy c-mean FCM returns incorrect clusters. The proposed approach is conducted in two steps. Firstly, a preprocessing step to decrease the noise presented in ultrasound images by applying the filters: Local Binary Pattern (LBP), median, median and discrete wavelet (DWT), (median, DWT & LBP) and (median & Laplacian) ML. Secondly, implementing Fuzzy C-Mean (FCM) for clustering the resulted images from the first step. Amongst those filters, Median & Lap
The fetal heart rate (FHR) signal processing based on Artificial Neural Networks (ANN),Fuzzy Logic (FL) and frequency domain Discrete Wavelet Transform(DWT) were analysis in order to perform automatic analysis using personal computers. Cardiotocography (CTG) is a primary biophysical method of fetal monitoring. The assessment of the printed CTG traces was based on the visual analysis of patterns that describing the variability of fetal heart rate signal. Fetal heart rate data of pregnant women with pregnancy between 38 and 40 weeks of gestation were studied. The first stage in the system was to convert the cardiotocograghy (CTG) tracing in to digital series so that the system can be analyzed ,while the second stage ,the FHR time series was t
... Show MoreArabic text categorization for pattern recognitions is challenging. We propose for the first time a novel holistic method based on clustering for classifying Arabic writer. The categorization is accomplished stage-wise. Firstly, these document images are sectioned into lines, words, and characters. Secondly, their structural and statistical features are obtained from sectioned portions. Thirdly, F-Measure is used to evaluate the performance of the extracted features and their combination in different linkage methods for each distance measures and different numbers of groups. Finally, experiments are conducted on the standard KHATT dataset of Arabic handwritten text comprised of varying samples from 1000 writers. The results in the generatio
... Show MoreLearn new methods of teaching mathematics contribute to raising the level of pupils to acquire mathematical concepts primary stage
Attempt advancement in the level of mathematics teaching for the better through the use of modern teaching strategies. The research aims at the progress in the acquisition of mathematical concepts schoolgirls after subjecting the fourth grade to teach in active learning strategies, the number of research sample (60) schoolgirl, by (30) schoolgirl experimental group and 30 pupils of the control group. Clear from the results shown the presence of a statistically significant difference between the acquisition of concepts of schoolgirls two groups (experimental and control) for the benefit of pupils of the exp
Optimizing the Access Point (AP) deployment has a great role in wireless applications due to the need for providing an efficient communication with low deployment costs. Quality of Service (QoS), is a major significant parameter and objective to be considered along with AP placement as well the overall deployment cost. This study proposes and investigates a multi-level optimization algorithm called Wireless Optimization Algorithm for Indoor Placement (WOAIP) based on Binary Particle Swarm Optimization (BPSO). WOAIP aims to obtain the optimum AP multi-floor placement with effective coverage that makes it more capable of supporting QoS and cost-effectiveness. Five pairs (coverage, AP deployment) of weights, signal thresholds and received s
... Show MoreThe purpose of this study is testing the effect of orgnizational learning in orgnizational Effectivness an applied study in Al-hiqma Jordinan Medecine Company . study sosiety 88 manegers sleect 80 of them .study used SPSS to test the hypothesis.study reachs to significant conculctions