In this investigative endeavor, a novel concrete variety incorporating sulfur-2,4-dinitrophenylhydrazine modification was developed, and its diverse attributes were explored. This innovative concrete was produced using sulfur-2,4-dinitrophenylhydrazine modification and an array of components. The newly created sulfur-2,4-dinitrophenylhydrazine modifier was synthesized. The surface texture resulting from this modifier was examined using SEM and EDS techniques. The component ratios within concrete, chemical and physical traits derived from the sulfur-2,4-dinitrophenylhydrazine modifier, chemical and corrosion resistance of concrete, concrete stability against water absorption, concrete resilience against freezing, physical and mechanical properties, durability, elastic modulus, and thermal expansion coefficient of the examined sulfur-infused concrete were assessed. The acquired results also substantiated that the thermal expansion coefficient value for sulfur-2,4-dinitrophenylhydrazine modified concrete was 14.8×10-6/0C. The average deformation of the analyzed concrete was 0.0026-0.0051, indicating a superior deformation performance compared to conventional concretes. Concrete with smaller aggregate sizes exhibited greater density, specifically 2283 kg/m3. The concrete density decreased gradually with an increase in aggregate size. The stability of sulfur-2,4-dinitrophenylhydrazine modified concrete was remarkably high in various aggressive environments. EDS analysis revealed that carbon atoms constituted 56.63% of the total mass, while sulfur made up 33.91% of the total mass. The obtained SEM outcomes demonstrated that the sulfur-2,4-dinitrophenylhydrazine modifier exhibited a more porous structure, devoid of crystalline formations. The sulfur-2,4-dinitrophenylhydrazine modification experienced a single-stage thermal mass loss, with the mass loss events being endothermic in nature. The IR findings verified the presence of amino functional groups (connected melamine ring) and the establishment of polymer sulfur chains.
In this study, three strengthening techniques, near-surface mounted NSM-CRFP, NSM-CFRP with externally bonding EB-CFRP, and hybrid CFRP with circularization were studied to increase the seismic performance of existing RC slender columns under lateral loads. Experimentally, 1:3 scale RC models were studied and subjected to both lateral static load and seismic excitation. In the dynamic test, a model was subjected to El Centro 1940 NS earthquake excitation by using a shaking table. According to the test results, the strengthening techniques showed a significant increase in load carrying capacity, of about 86.6%, and 46.6%, for circularization and NSM-CFRP respectively, of the reference unstrengthened columns. On the other hand, column
... Show MoreNon-prismatic reinforced concrete (RC) beams are widely used for various practical purposes, including enhancing architectural aesthetics and increasing the overall thickness in the support area above the column, which gives high assurance to services that this will not result in the distortion of construction features and can reduce heights. The hollow sections (recess) can also be used for the maintenance of large structural sections and the safe passage of utility lines of water, gas, telecommunications, electricity, etc. They are generally used in large and complex civil engineering works like bridges. This study conducted a numerical study using the commercial finite element software ANSYS version 15 for analysing RC beams, hol
... Show MoreThis paper presents a study to investigate the behavior of post-tensioned segmental concrete beams that exposed to high-temperature. The experimental program included fabricating and testing twelve simply supported beams that divided into three groups depending on the number of precasting concrete segments. All specimens were prepared with an identical length of 3150 mm and differed in the number of the incorporated segments of the beam (9, 7, or 5 segments). To simulate the genuine fire disasters, nine out of twelve beams were exposed to a high-temperature flame for one hour. Based on the standard fire curve (ASTM – E119), the temperatures of 300◦C (572◦F), 500◦C (932◦F), and 700◦C (1292◦F) were adopted. Consequently,
... Show MoreReinforcing asphalt concrete with polyester fibers considered as an active remedy to alleviate the harmful impact of fatigue deterioration. This study covers the investigation of utilizing two shapes of fibers size, 6.35 mm by 3.00 mm and 12.70 mm by 3.00 mm with mutual concentrations equal to 0.25 %, 0.50 % and 0.75 % by weight of mixture. Composition of asphalt mixture consists of different optimum (40-50) asphalt cement content, 12.50 mm nominal aggregate maximum size with limestone dust as a filler. Following the traditional asphalt cement and aggregate tests, three essential test were carried out on mixtures, namely: Marshall test (105 cylindrical specimens), indirect tensile strength test (21 cylindrical specimens)
... Show MoreTwo dimensional meso-scale concrete modeling was used in finite element analysis of plain concrete beam subjected to bending. The plane stress 4-noded quadrilateral elements were utilized to model coarse aggregate, cement mortar. The effect of aggregate fraction distribution, and pores percent of the total area – resulting from air voids entrapped in concrete during placement on the behavior of plain concrete beam in flexural was detected. Aggregate size fractions were randomly distributed across the profile area of the beam. Extended Finite Element Method (XFEM) was employed to treat the discontinuities problems result from double phases of concrete and cracking that faced during the finite element analysis of concrete beam. Crac
... Show MoreThis paper presents a study to investigate the behavior of post-tensioned segmental concrete beams that exposed to high-temperature. The experimental program included fabricating and testing twelve simply supported beams that divided into three groups depending on the number of precasting concrete segments. All specimens were prepared with an identical length of 3150 mm and differed in the number of the incorporated segments of the beam (9, 7, or 5 segments). To simulate the genuine fire disasters, nine out of twelve beams were exposed to a high-temperature flame for one hour. Based on the standard fire curve (ASTM – E119), the temperatures of 300◦C (572◦F), 500◦C (932◦F), and 700◦C (1292◦F) were adopted. Consequently,
... Show MoreThis paper presents experimental results regarding the behaviours of eight simply supported partially prestressed concrete beams with internally unbonded tendons, focusing particularly on the effect of three different variables: concrete compressive strength,