In this investigative endeavor, a novel concrete variety incorporating sulfur-2,4-dinitrophenylhydrazine modification was developed, and its diverse attributes were explored. This innovative concrete was produced using sulfur-2,4-dinitrophenylhydrazine modification and an array of components. The newly created sulfur-2,4-dinitrophenylhydrazine modifier was synthesized. The surface texture resulting from this modifier was examined using SEM and EDS techniques. The component ratios within concrete, chemical and physical traits derived from the sulfur-2,4-dinitrophenylhydrazine modifier, chemical and corrosion resistance of concrete, concrete stability against water absorption, concrete resilience against freezing, physical and mechanical properties, durability, elastic modulus, and thermal expansion coefficient of the examined sulfur-infused concrete were assessed. The acquired results also substantiated that the thermal expansion coefficient value for sulfur-2,4-dinitrophenylhydrazine modified concrete was 14.8×10-6/0C. The average deformation of the analyzed concrete was 0.0026-0.0051, indicating a superior deformation performance compared to conventional concretes. Concrete with smaller aggregate sizes exhibited greater density, specifically 2283 kg/m3. The concrete density decreased gradually with an increase in aggregate size. The stability of sulfur-2,4-dinitrophenylhydrazine modified concrete was remarkably high in various aggressive environments. EDS analysis revealed that carbon atoms constituted 56.63% of the total mass, while sulfur made up 33.91% of the total mass. The obtained SEM outcomes demonstrated that the sulfur-2,4-dinitrophenylhydrazine modifier exhibited a more porous structure, devoid of crystalline formations. The sulfur-2,4-dinitrophenylhydrazine modification experienced a single-stage thermal mass loss, with the mass loss events being endothermic in nature. The IR findings verified the presence of amino functional groups (connected melamine ring) and the establishment of polymer sulfur chains.
With the development of cloud computing during the latest years, data center networks have become a great topic in both industrial and academic societies. Nevertheless, traditional methods based on manual and hardware devices are burdensome, expensive, and cannot completely utilize the ability of physical network infrastructure. Thus, Software-Defined Networking (SDN) has been hyped as one of the best encouraging solutions for future Internet performance. SDN notable by two features; the separation of control plane from the data plane, and providing the network development by programmable capabilities instead of hardware solutions. Current paper introduces an SDN-based optimized Resch
A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.
Villages in most rural areas of the developing world, including Iraq, suffer from a deterioration in the urban structure in its various aspects, both in the lack of internal planning in terms of residential unit design which is not commensurate with the sustainable health life, in addition to the lack of infrastructure and community services networks As well as road networks linking them to neighboring urban centers, which was accompanied by the emergence of other problems, including the desire of the population to migrate to neighboring cities and the deterioration of economic activities due to lack of activation of economic development plans (Rural villages suffer from a lack of interest in urban development within the regional spatial
... Show MoreChilled ceilings systems offer potential for overall capital savings. The main aim of the present research is to investigate the thermal performance of the indirect contact closed circuit cooling tower, ICCCCT used with chilled ceiling, to gain a deeper knowledge in this important field of engineering which has been traditionally used in various industrial & HVAC systems. To achieve this study, experimental work were implemented for the ICCCCT use with chilled ceiling. In this study the thermal performances of closed wet cooling tower use with chilled ceiling is experimentally and theoretically investigated. Different experimental tests were conducted by varying the controlling parameters to investigate their effects
... Show MoreEco-friendly concrete is produced using the waste of many industries. It reduces the fears concerning energy utilization, raw materials, and mass-produced cost of common concrete. Several stress-strain models documented in the literature can be utilized to estimate the ultimate strength of concrete components reinforced with fibers. Unfortunately, there is a lack of data on how non-metallic fibers, such as polypropylene (PP), affect the properties of concrete, especially eco-friendly concrete. This study presents a novel approach to modeling the stress-strain behavior of eco-friendly polypropylene fiber-reinforced concrete (PFRC) using meta-heuristic particle swarm optimization (PSO) employing 26 PFRC various mixtures. The cement was partia
... Show MoreFiber Reinforced Polymer (FRP) bars are anisotropic in nature and have high tensile strength in the fiber direction. The use of High-Strength Concrete (HSC) allows for better use of the high-strength properties of FRP bars. The mechanical properties of FRP bars can yield to large crack widths and deflections. As a result, the design of concrete elements reinforced with FRP materials is often governed by the Serviceability Limit States (SLS). This study investigates the short-term serviceability behavior of FRP RC I-beams. Eight RC I-beams reinforced with carbon-FRP (CFRP) and four steel RC I-beams, for comparison purposes, were tested under two-point loading.
Deformations on the concrete and crack widths and spacing are measured and
The main objective of this study is to understand the work of the pile caps made of lightweight aerated foam concrete and study the many factors affecting the ability and the capacity of the shear. The study was done by analyzing previous practical and theoretical experiences on the reinforced concrete pile caps. The previous practical results indicated that all specimens failed by shear diagonal compression or tension modes except one specimen that failed flexural-shear mode. Based on test specimens' practical results and behavior, some theoretical methods for estimating the ultimate strength of reinforced concrete pile caps have been recommended, some of which evolved into the design documents available on the subject.
... Show MoreThe developing countries, like our country Iraq suffer from deep comprehensive structural crisis, manifestations and a clear imbalance between the demand and the supply sides. The overall imbalance in the external balance. As a consequence, this caused the accumulation of foreign debts or failure in the implementation of economic development programs. The countries which are forced to resort to the International Monitoring Funds, and the World Bank for assistance and to express an opinion on policies that include restrictions controls that belong to the monetary, and fiscal side group, imposed on the economies crisis, as a condition for returning to normal which called reform programs. The organize of the events of radical changes in the
... Show MoreAccording to the European Union Water Framework Directive requirements, diatom metrics were used to assess the ecological status of surface waters in the Gaziantep central catchment (Turkey). A total of 42 diatom taxa were identified. A few environmental factors (especially lead, copper, orthophosphate, and chromium) played significant roles on the distribution of diatom assemblages among the sampling stations. The first two axes of the canonical correspondence analysis elucidated 91.6 % of the species–environment correlations with 13.9 % of the cumulative variance of species. The applied diatom indices (TIT – Trophic Index Turkey, TI – Trophic Index, and EPI-D – Eutrophication and/or Pollution Index-Diatom) showed different results
... Show More