Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-cancerous cells to find the best combination of parameters in CNN to predict lung cancer accurately. The proposed system recorded the highest accuracy of 92.79%. In addition to that, the paper addresses 192 observations made using the CNN model.
The Iraqi marshes are considered the most extensive wetland ecosystem in the Middle East and are located in the middle and lower basin of the Tigris and Euphrates Rivers which create a wetlands network and comprise some shallow freshwater lakes that seasonally swamped floodplains. Al-Hawizeh marsh is a major marsh located east of Tigris River south of Iraq. This study aims to assess water quality through water quality index (WQI) and predict Total Dissolved Solids (TDS) concentrations in Al-Hawizeh marsh based on artificial neural network (ANN). Results showed that the WQI was more than 300 for years 2013 and 2014 (Water is unsuitable for drinking) and decreased within the range 200-300 in years 2015 and 2016 (Very poor water). The
... Show MoreNovel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
A Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
A Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twenty four samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
The prospective study has been designed to determine some biomarkers in Iraqi female patients with
breast cancer. The current study contained 30 patients whose tissue samples have been collected from
hospitals in Medical City in Baghdad after consent patients themselves and used immunohistochemical
technique to determine these markers. The results showed a significant correlation between ER and PR tissue
markers (Sig = 0.000) and a significant correlation between cyclin E phenotype and cyclin E intensity (Sig =
0.001).
The study included the collection of 75 bronchial wash samples from patients suspected to have lung cancer. These samples were subjected to a diagnostic cytological study to detect the dominant type of lung cancer. It was noticed that 33 patients proved to have a lung cancer out of 75 (44%) of these, 19 cases (57.6%)were diagnosed having Squamus cell carcinoma,7cases (21.21%) showed Adenocarcinoma ,6 cases (18.18%) were having small cell carcinoma while only one case (3.03%)was large cell carcinoma .Nearly 70% of cases were correlated with smokers .Bacteria were isolated from 53 patients in which 33 isolates were associated with the cancer cases while 20 of them from non infected patients. By using different morphological ,biochemical test
... Show MoreDiscriminant between groups is one of the common procedures because of its ability to analyze many practical phenomena, and there are several methods can be used for this purpose, such as linear and quadratic discriminant functions. recently, neural networks is used as a tool to distinguish between groups.
In this paper the simulation is used to compare neural networks and classical method for classify observations to group that is belong to, in case of some variables that don’t follow the normal distribution. we use the proportion of number of misclassification observations to the all observations as a criterion of comparison.
Abstract:
Objectives: The present study aims to evaluate effectiveness of educational program the nurses' knowledge towards early prediction of acquired weakness in the intensive care unit.
Methodology: A pre-experimental study design (comparison of two groups), which was achieved through the pre and post-test method for the study sample through the application of an educational program in the intensive care unit of Al-Zahra Teaching Hospital in Kut city, Wasit Governorate. The study was conducted for the period from 28th April 2022 to 15th August 2022 by selecting a purposive (non-probability) sample for this study. The study sample size was (52) nu
... Show MoreBackground: Lung cancer is a common disease for patients over the age of 50 years, especially males due to smoking habits. This study aimed to compare the modulation complexity score (MCS) for the advanced treatment planning techniques which the intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). Materials and Methods: Thirty patients who had non-small lung cancerous tumors on their left side participated in this study. The range ages were 68 to 98 years, the heights were between 151 and 182cm and they having weights from 46 to 79 kg. For Each patient will create two plans dial using two different techniques, which will be Intensity Modulated Radiation Therapy (IMRT) and Volumetric Modulated Arc Therapy
... Show MoreThe increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage (5, 10 and 20 wt.% ) of (n-heptane, toluene, and a mixture of different ratio
... Show More