The present project involves photodegrading the dye solochrom violet under advanced oxidation techniques at (25 oC) temperature and UV light. Zinc Oxide (ZnO) and UV radiation at a wavelength of 580 nm were used to conduct the photocatalytic reaction of the solochrom violet dye. One of the factors looked into was the impact of the starting conditions. pH, the amount of original hydrogen peroxide, and the dye concentration time radiation were used. For hours, the kinetics and percentages of degradation were examined at various intervals. In general, it has been discovered that the photodegradation rates of the dye were greater when H2O2 and ZnO were combined with UV light. The best wavelength to use was determined. Modern oxidation techniques were proven to be very effective at degrading the majority of contaminants in wastewater. Using a spectrophotometer, the dye's photocatalytic browning was investigated. The theoretical calculation concentrated on the active site using the density functional theory technique and the Gaussian 09 program.
This research study experimentally the effect of air flow rate on humidification process
parameters. Experimental data are obtained from air conditioning study unit T110D. Results obtained
from experimental test, calculations and psychometrics software are discussed. The effect of air flow rate
on steam humidification process parameters as a part of air-conditioning processes can be explained
according to obtained results. Results of the steam humidification processes (1,2) with and without
preheating with 5A and 7.5A shows decreasing in dry bulb temperature, humidity ratio, and heat add to
moist air with increasing air flow rate, but humidification load, and total energy of moist air increase with
increasing air flo
When a vehicle is left parked in the sun for an extended period, the gathered heat causes damage to several interiors within the cabin and causes discomfort for people and animals left inside the car. In the present work, the effect of the orientation of a parked white minibus on temperature distribution and cooling load calculation is studied experimentally in an open environment. Two different cases were studied facing south and facing east. For several hours, the temperature inside the car cabin had been monitored and measured at five separate locations. The cooling load calculations are carried out based on the experimental measurements. The results show that the overheating of parked cars always happens as a result
... Show MoreThe removal of yellow(W6GS) dye has been studied, by using Nano chitosan . Adsorption isotherms were studied under different Temperatures , the effect of salt ions and Equilibrium time were investigated . Adsorption isotherms were found to be comparable to the Langmuir equation .the adsorption results were evidently increased with the high temperature (Endothermic process ). The functions were calculated (ΔH, ΔG, ΔS) were calculated. The Kinetics of the adsorption was studied. The results were treated according to (Lagergren equation). The Kinetic experimental data properly correlated with the pseudo First order kinetic model
A new copolymer (MFA) was prepared from condensation of melamine (M) with p- methyl – anisole (A) in the presence of condensation agent like 37% (w/v) of formaldehyde. The new copolymer was characterized by elemental, IR and HNMR spectra. The chelating ion-exchange property of this polymer was studied for methylene blue dye in aqueous solution in 100-200ppm concentrations. The adsorption study was carried out over a wide range of pH, shaking time and in media of various kinetic parameters models. Thermal parameters like enthalpy, entropy and Gibbs free energy of adsorption process of methylene blue on surface of MFA resin were determined on the basis of kinetic parameters at different temperatures. To describe the equilibrium of adsorp
... Show MoreIn this study, Zizphus spina-christi leaf powder was applied for the adsorption of methyl orange. The effect of different operating parameters on the Batch Process adsorption was investigated such as solution pH (2-12), effect of contact time (0-60 min.), initial dye concentration (2-20 mg/L), effect of adsorbent dosage (0-4.5 g) and effect of temperature (20-50ᵒC). The results show a maximum removal rate and adsorption capacity (%R= 23.146, qe = 2.778 mg/g) at pH = 2 and equilibrium was reached at 40 min. The pseudo- second-order kinetics were found to be best fit for the removal process (R2 = 0.997). Different isotherm models (Langmuir, Freundlich, Dubini-Radushkevich,Temkin) were applied in this stud
... Show MoreToxicity with advanced glycation end products (AGEs) is a major problem in uremic patients. Treatment with peritoneal dialysis (PD) exacerbates AGE formation as a result of bioincompatibility of the conventional peritoneal dialysis fluid (PDF). The presence of glucose degradation products (GDPs) in PDF is the main cause of its bioincompatibility. Carnosine is an endogenous dipeptide with a powerful antiglycation/antioxidant activity. In an attempt to improve PDF biocompatibility, we evaluated the effect of carnosine in human peritoneal mesothelial cells (HPMC) incubated with PDF or GDPs in vitro. Methods: HPMC were incubated for short or prolonged time with PDF in the presence or absence of carnosine. Similarly, HPMC were incubated in the s
... Show MoreHydroisomerization of Iraqi light naphtha was studied on prepared Ni-Pt/H-mordenite catalyst at a temperature range of 220-300°C, hydrogen to hydrocarbon molar ratio of 3.7, liquid hourly space velocity (LHSV) 1 hr-1 and at atmospheric pressure.
The result shows that the hydrisomerization of light naphtha increases with the increase in reaction temperature at constant LHSV. However, above 270 0C the isomers formation decreases and the reaction is shifted towards the hydrocracking reaction, a higher octane number of naphtha was formed at 270 °C.
Copper electrodeposition by electrorefining process in acidic sulfate media contains 40 g/l of cupric ions and 160 g/l of sulfuric acid was achieved to study the influence of the operating parameters on cathode purity, surface morphology, deposition rate, current efficiency and power consumption. These operating parameters and there ranges are: current density 200, 300 and 400 A/m2, electrolyte temperature 35, 50 and 65 oC, electrodes spacing 15, 30 and 45 mm and electrolyte residence time 6, 4 and 2 h were utilized. XRF, SEM and EDX analyses were attained to clarify the properties of the produced cathode.
Solar distillers are a sustainable and simple solution for addressing water scarcity, but their limited productivity restricts their effectiveness. This work aimed to assess the thermal performance of a novel tracked, tilted, hexagonal tubular solar still (HTSS) of four-sectioned U-channel receiver. Two identical HTSSs were side-to-side tested in Baghdad-Iraq (33.3°N, 43.3°E) from June to September 2024. The thermal evaluation of single-axis tracking solar still, tilted at (5° to 15°) with the horizontal axis and charged with and without hydrogel beads for water depth of 60 mm. The still's thermal performance is assessed by analyzing heat transfer coefficients, energy and exergy efficiencies, as well as conducting cost and environment
... Show More