Preferred Language
Articles
/
bsj-8968
Recognizing Different Foot Deformities Using FSR Sensors by Static Classification of Neural Networks
...Show More Authors

Sensing insole systems are a promising technology for various applications in healthcare and sports. They can provide valuable information about the foot pressure distribution and gait patterns of different individuals. However, designing and implementing such systems poses several challenges, such as sensor selection, calibration, data processing, and interpretation. This paper proposes a sensing insole system that uses force-sensitive resistors (FSRs) to measure the pressure exerted by the foot on different regions of the insole. This system classifies four types of foot deformities: normal, flat, over-pronation, and excessive supination. The classification stage uses the differential values of pressure points as input for a feedforward neural network (FNN) model. Data acquisition involved 60 subjects diagnosed with the studied cases. The implementation of FNN achieved an accuracy of 96.6% using 50% of the dataset as training data and 92.8% using only 30% training data. The comparison with related work shows good impact of using the differential values of pressure points as input for neural networks compared with raw data.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Mar 15 2019
Journal Name
Al-khwarizmi Engineering Journal
Studying the effect of Different wt % AL2O3 Nanoparticles of 2024Al Alloy / AL2O3 Composites on Mechanical Properties
...Show More Authors

 

The nanocompsite of alumina (Al2O3) produced a number of beneficial effects in alloys. There is increasing in resistance of materials to surface related failures , such as the mechanical properties , fatigue and stress corrosion cracking .The experimental results observed that the adding of reinforced  nanomaterials  type Al2O3  enhanced the   HB hardness, UTS, 0.2 YS and ductility of 2014 Al/Al2O3 nano composites . the analysis of experiments, indicated that The maximum enhancement was observed at 0.4 wt.% Al2O3. The ultimate improvement percentage were 15.78% HB hardness, 18.1% (UTS), 12.86% (

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Svu-international Journal Of Engineering Sciences And Applications
Water Quality Detection using cost-effective sensors based on IoT
...Show More Authors

Crossref (4)
Crossref
Publication Date
Fri Dec 30 2011
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Energy Generation from Static Water Head Developed By Forward Osmosis
...Show More Authors

In this work, the possibility of utilizing osmosis phenomenon to produce energy as a type of the renewable energy using Thin Film Composite Ultra Low Pressure membrane TFC-ULP was studied. Where by forward osmosis water passes through the membrane toward the concentrated brine solution, this will lead to raise the head of the high brine solution. This developed static head may be used to produce energy. The aim of the present work is to study the static head developed and the flux on the high brine water solution side when using forward and reverse osmosis membranes for an initial concentration range from 35-300 g/l for each type of membrane used at room temperature and pressure conditions, and finally calculating the maximum possible po

... Show More
View Publication Preview PDF
Publication Date
Mon Sep 16 2024
Journal Name
Journal Of Optics
Improvement Of The Efficiency Of Optical Sensors Of Polypyrrole Using Graphene Oxide
...Show More Authors

This research explores the preparation of polypyrrole (PPy) using chemical oxidation and its enhancement with graphene oxide (GO) for optical sensor applications. PPy was synthesized by polymerizing pyrrole monomers with ferric chloride (Fe2Cl3) as the oxidant. The resulting PPy was then combined with GO to form a composite material, aiming to improve its electrical and optical properties. Polypyrrole nanofibers were obtained and after adding graphene oxide, the sensitivity increased. Characterization techniques including UV-Vis spectroscopy, DC conductivity measurements, Field Emission Scanning Electron Microscopy (FESEM) and response of photocurrent analysis were employed. The incorporation of GO into PPy resulted in a significant reducti

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Thu Nov 21 2019
Journal Name
Journal Of Engineering
A Neural Networks based Predictive Voltage-Tracking Controller Design for Proton Exchange Membrane Fuel Cell Model
...Show More Authors

In this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Wed Mar 20 2019
Journal Name
Al-khwarizmi Engineering Journal
Enhancement of Heat Exchanger Performance by Using Dimpled Tube
...Show More Authors

The enhancement of heat exchanger performance was investigated using dimpled tubes tested at different Reynolds numbers, in the present work four types of dimpled tubes with a specified configuration manufactured, tested and then compared performance with the smooth tube and other passive techniques performance. Two dimpled arrangements along the tube were investigated, these are inline and staggered at constant pitch ratio X/d=4, the test results showed that Nusselts number (heat transfer) of the staggered array is higher than the inline array by 13%.  The effect of different depths of the dimple (14.5 mm and 18.5 mm) has been also investigated; a tube with large dimple diameter enhanced the Nusselts number by about 25% for the ran

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Experimental and Numerical Analysis of Piled Raft Foundation with Different Length of Piles Under Static Loads
...Show More Authors

In order to understand the effect of (length of pile / diameter of pile) ratio on the load carrying capacity and settlement reduction behavior of piled raft resting on loose sand, laboratory model tests were conducted on small-scale models. The parameters studied were the effect of pile length and the number of piles. The load settlement behavior obtained from the tests has been validated by using 3-D finite element in ABAQUS program, was adopted to understand the load carrying response of piled raft and settlement reduction. The results of experimental work show that the increase in (Lp/dp) ratio led to increase in load carrying capacity by piled raft from (19.75 to 29.35%), (14.18 to 28.87%) and (0 to 16.49%) , the maximum load carried

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu May 02 2013
Journal Name
Journal Of Engineering
Experimental and numerical analysis of piled raft foundation with different length of piles under static loads
...Show More Authors

In order to understand the effect of (length of pile / diameter of pile) ratio on the load carrying capacity and settlement reduction behavior of piled raft resting on loose sand, laboratory model tests were conducted on small-scale models. The parameters studied were the effect of pile length and the number of piles. The load settlement behavior obtained from the tests has been validated by using 3-D finite element in ABAQUS program, was adopted to understand the load carrying response of piled raft and settlement reduction. The results of experimental work show that the increase in (Lp/dp) ratio led to increase in load carrying capacity by piled raft from (19.75 to 29.35%), (14.18 to 28.87%) and (0 to 16.49%) , the maximum load carr

... Show More
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Engineering
Artificial Neural Networks Modeling of Total Dissolved Solid in the Selected Locations on Tigris River, Iraq
...Show More Authors

The study aims to predict Total Dissolved Solids (TDS) as a water quality indicator parameter at spatial and temporal distribution of the Tigris River, Iraq by using Artificial Neural Network (ANN) model. This study was conducted on this river between Mosul and Amarah in Iraq on five positions stretching along the river for the period from 2001to 2011. In the ANNs model calibration, a computer program of multiple linear regressions is used to obtain a set of coefficient for a linear model. The input parameters of the ANNs model were the discharge of the Tigris River, the year, the month and the distance of the sampling stations from upstream of the river. The sensitivity analysis indicated that the distance and discharge

... Show More
View Publication Preview PDF
Publication Date
Mon Nov 11 2019
Journal Name
Day 3 Wed, November 13, 2019
Drill Bit Selection Optimization Based on Rate of Penetration: Application of Artificial Neural Networks and Genetic Algorithms
...Show More Authors
Abstract<p>The drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the</p> ... Show More
View Publication
Crossref (11)
Crossref