The COVID-19 pandemic has profoundly affected the healthcare sector and the productivity of medical staff and doctors. This study employs machine learning to analyze the post-COVID-19 impact on the productivity of medical staff and doctors across various specialties. A cross-sectional study was conducted on 960 participants from different specialties between June 1, 2022, and April 5, 2023. The study collected demographic data, including age, gender, and socioeconomic status, as well as information on participants' sleeping habits and any COVID-19 complications they experienced. The findings indicate a significant decline in the productivity of medical staff and doctors, with an average reduction of 23% during the post-COVID-19 period. These results reflect the overall impact observed following the entire course of the COVID-19 pandemic and are not specific to a particular wave. The analysis revealed that older participants experienced a more pronounced decline in productivity, with a mean decrease of 35% compared to younger participants. Female participants, on average, had a 28% decrease in productivity compared to their male counterparts. Moreover, individuals with lower socioeconomic status exhibited a substantial decline in productivity, experiencing an average decrease of 40% compared to those with higher socioeconomic status. Similarly, participants who slept for fewer hours per night had a significant decline in productivity, with an average decrease of 33% compared to those who had sufficient sleep. The machine learning analysis identified age, specialty, COVID-19 complications, socioeconomic status, and sleeping time as crucial predictors of productivity score. The study highlights the significant impact of post-COVID-19 on the productivity of medical staff and doctors in Iraq. The findings can aid healthcare organizations in devising strategies to mitigate the negative consequences of COVID-19 on medical staff and doctors' productivity.
The research seeks to achieve its goal of demonstrating the impact of applying banking governance variables on the financial performance of Islamic banks, and the independent research variables are represented by (X) by (the number of independent members in the board (X1), the number of directors in the board (X2), the number of committees emanating from the board ( X3), the percentage of shares owned by major shareholders in the board (X4), the number of members of the Sharia supervisory board (X5)), and the dependent variable (Y) is represented by (rate of return on assets (Y1), rate of return on equity (Y2)).
The research sample included (4) Islamic banks, namely (Iraqi Islamic Bank, National Islamic Bank, Jihan Islamic Bank,
... Show MoreCanonical correlation analysis is one of the common methods for analyzing data and know the relationship between two sets of variables under study, as it depends on the process of analyzing the variance matrix or the correlation matrix. Researchers resort to the use of many methods to estimate canonical correlation (CC); some are biased for outliers, and others are resistant to those values; in addition, there are standards that check the efficiency of estimation methods.
In our research, we dealt with robust estimation methods that depend on the correlation matrix in the analysis process to obtain a robust canonical correlation coefficient, which is the method of Biwe
... Show MoreThis research is aiming to analyze the impacts of the current budget in Iraq by using the Government Finance Statistics Manual (GFSM) , the research is based on hypothesis: (There is an impact on the using of the Government Finance Statistics Manual (GFSM) In public budget in Iraq) .This hypothesis was demonstrated by using the questionnaire, a number of conclusions were reached, the most important being the lack of terminology adopted in the government accounting system and the Iraqi financial and accounting manual as a result of their adoption of the monetary basis for the lack of accounting terminology that meets t
... Show MoreThe objective of this study is to evaluate the efficacy and safety of rowatinex and tamsulosin in the treatment of patients with ureteric stone.
Forty patients with ureteric stone ranged (4- 12) mm, were included in this study. They were randomized into two groups where the first group includes twenty patients treated with Rowatinex three times daily (Group 1), and the second group includes twenty patients treated with tamsulosin 0.4mg/day (Group 2). All patients were randomly assigned to receive the designed standard medical therapy for a maximum of 3 weeks.
Each group was given an antibiotic as prophylaxis and an injectable non-steroidal anti-inflammatory drug used on demand. At the outpatient clinic all subjects were a
... Show MoreBackground: Medical-surgical nurses are responsible of providing competent care to clients with a wide-array of acute and chronic health problems. This challenging task requires arming nurses with advanced competencies of health literacy to effectively educate their clients. However, evidence about medical-surgical nurse’s health literacy-related knowledge and experience is limited. Purposes: This study aimed to determine the level of the health literacy-related knowledge and experience among medical-surgical nurses.Design: A descriptive-cross-sectional study was conducted among a total sample of 177 nurses who were practicing in medical-surgical wards in teaching hospitals in Iraq. A convenience sampling method was used to sele
... Show More<span lang="EN-US">The need for robotics systems has become an urgent necessity in various fields, especially in video surveillance and live broadcasting systems. The main goal of this work is to design and implement a rover robotic monitoring system based on raspberry pi 4 model B to control this overall system and display a live video by using a webcam (USB camera) as well as using you only look once algorithm-version five (YOLOv5) to detect, recognize and display objects in real-time. This deep learning algorithm is highly accurate and fast and is implemented by Python, OpenCV, PyTorch codes and the Context Object Detection Task (COCO) 2020 dataset. This robot can move in all directions and in different places especially in
... Show MoreImitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing co
... Show MoreMaximizing the water productivity for any agricultural system is considered an adaptation to the potential climate change crisis. It is required, especially in arid and semi-arid environments in Iraq. Therefore, this study assessed the potential impact of climate change on the different environments in the Qadissiya and Nineveh provinces. The ensemble of six GCM models employed for the regional climate model of the HCLIM-ALADIN in high-resolution 10*10 km2 and Aqua-Crop was used to examine the response of water productivity and yield of winter wheat. With and without CO2 concentration changing under different water regimes in the near term (2020-2040
As material flow cost accounting technology focuses on the most efficient use of resources like energy and materials while minimizing negative environmental effects, the research aims to show how this technology can be applied to promote green productivity and its reflection in attaining sustainable development. In addition to studying sustainability, which helps to reduce environmental impacts and increase green productivity, the research aims to demonstrate the knowledge bases for accounting for the costs of material flow and green productivity. It also studies the technology of accounting for the costs of material flow in achieving sustainable development and the role of green productivity in achieving sustainable development. According
... Show MoreThis study was aimed to evaluate the effect of spraying nano chitosan loaded with NPK fertilizer and nettle leaf and green tea extracts on the growth and productivity of potato for the spring and fall seasons of 2021.It was conducted at private farm in Wasit Governorate, Iraq, as a factorial experiment (5 × 5) within randomized complete block design using three replicates. The first factor included spraying with four concentrations of chitosan nanoparticles loaded with NPK fertilizer 0, 10. 15 and 20% in addition to chemical fertilization treatment, the second factor was spraying nettle leaf extract 25 and 35 gL-1 and green tea extract with 2 and 4 g.L-1, in addition to the control treatment, spraying with distilled water only. The
... Show More