In this paper, we calculate and measure the SNR theoretically and experimental for digital full duplex optical communication systems for different ranges in free space, the system consists of transmitter and receiver in each side. The semiconductor laser (pointer) was used as a carrier wave in free space with the specification is 5mW power and 650nm wavelength. The type of optical detector was used a PIN with area 1mm2 and responsively 0.4A/W for this wavelength. The results show a high quality optical communication system for different range from (300-1300)m with different bit rat (60-140)kbit/sec is achieved with best values of the signal to noise ratio (SNR).
Many countries, including the Arab countries, have sought to establish the free zones because of their important economic importance to diversify financial income, especially in rentier countries, in light of the trend towards the capitalist economy in light of what has been produced by economic globalization, in addition to that many Arab countries have turned towards establishing the free zones that many countries of the world have turned to, to support their economy, especially in the field of attracting foreign investments for these regions, and using them in transferring modern technology, and operating the national workers of the countries that have established those areas, and adopting their products in meeting the needs of t
... Show MoreCadmium Oxide thin films were deposited on glass substrate by spray pyrolysis technique at different temperatures (300,350,400, 500)oC. The optical properties of the films were studied in this work. The optical band-gap was determined from absorption spectra, it was found that the optical band-gap was within the range of (2.5-2.56)eV also width of localized states and another optical properties.
GaN thin films were deposited by thermal evaporation onto
glass substrates at substrate temperature of 403 K and a thickness of
385 nm . GaN films have amorphous structure as shown in X-ray
diffraction pattern . From absorbance data within the range ( 200-
900 ) nm direct optical energy gap was calculated . Also the others
optical parameters like transmittance T, reflectance R , refractive
index n , extinction coefficient k , real dielectric constant 1 Î , and
imaginary dielectric constant 2 Î were determined . GaN films
have good absorbance and minimum transmittance in the region of
the visible light .
The introduction of Industry 4.0, to improve Internet of Things (IoT) standards, has sparked the creation of 5G, or highly sophisticated wireless networks. There are several barriers standing in the way of 5G green communication systems satisfying the expectations for faster networks, more user capacity, lower resource consumption, and cost‐effectiveness. 5G standards implementation would speed up data transmission and increase the reliability of connected devices for Industry 4.0 applications. The demand for intelligent healthcare systems has increased globally as a result of the introduction of the novel COVID‐19. Designing 5G communication systems presents research problems such as optimizing
Smart cities have recently undergone a fundamental evolution that has greatly increased their potentials. In reality, recent advances in the Internet of Things (IoT) have created new opportunities by solving a number of critical issues that are allowing innovations for smart cities as well as the creation and computerization of cutting-edge services and applications for the many city partners. In order to further the development of smart cities toward compelling sharing and connection, this study will explore the information innovation in smart cities in light of the Internet of Things (IoT) and cloud computing (CC). IoT data is first collected in the context of smart cities. The data that is gathered is uniform. The Internet of Things,
... Show MoreResearch on the automated extraction of essential data from an electrocardiography (ECG) recording has been a significant topic for a long time. The main focus of digital processing processes is to measure fiducial points that determine the beginning and end of the P, QRS, and T waves based on their waveform properties. The presence of unavoidable noise during ECG data collection and inherent physiological differences among individuals make it challenging to accurately identify these reference points, resulting in suboptimal performance. This is done through several primary stages that rely on the idea of preliminary processing of the ECG electrical signal through a set of steps (preparing raw data and converting them into files tha
... Show MoreThis work aims to study the exploding copper wire plasma parameters by optical emission spectroscopy. The emission spectra of the copper plasma have been recorded and analyzed The plasma electron temperature (Te), was calculated by Boltzmann plot, and the electron density (ne) calculated by using Stark broadening method for different copper wire diameter (0.18, 0.24 and 0.3 mm) and current
of 75A in distilled water. The hydrogen (Hα line) 656.279 nm was used to calculate the electron density for different wire diameters by Stark broadening. It was found that the electron density ne decrease from 22.4×1016 cm-3 to 17×1016 cm-3 with increasing wire diameter from 0.18 mm to 0.3 mm while the electron temperatures increase from 0.741 to
In this work, an optical fiber biomedical sensor for detecting the ratio of the hemoglobin in the blood is presented. A surface plasmon resonance (SPR)-based coreless optical fiber was developed and implemented using single- and multi-mode optical fibers. The sensor is also utilized to evaluate refractive indices and concentrations of hemoglobin in blood samples, with 40 nm thickness of (20 nm Au and 20 nm Ag) to increase the sensitivity. It is found in practice that when the sensitive refractive index increases, the resonant wavelength increases due to the decrease in energy.