Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D CNNs have shown improved accuracy in the classification of ASD compared to traditional machine learning algorithms, on all these datasets with higher accuracy of 99.45%, 98.66%, and 90% for Autistic Spectrum Disorder Screening in Data for Adults, Children, and Adolescents respectively as they are better suited for the analysis of time series data commonly used in the diagnosis of this disorder
The research aims to identify the psychological and health risks that a child might be exposed to by playing with hazardous toys such as pellet guns. To this end, the researcher has visited Ibn Al-Haytham Eye Hospital in Baghdad, the emergency department to figure out the rate of injuries in Children for the consecutive years (2017-2018) and the first Month of (2019). The psychological risks as a result of disability are represented by the inability to accommodate the surrounding environment well. Additionally, the child experiences a kind of tension, conflict, and going in psychological crises through introversion, isolation, withdrawal tendencies, and poor conformity with himself and the Society.
This paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi
Recording an Electromyogram (EMG) signal is essential for diagnostic procedures like muscle health assessment and motor neurons control. The EMG signals have been used as a source of control for powered prosthetics to support people to accomplish their activities of daily living (ADLs). This work deals with studying different types of hand grips and finding their relationship with EMG activity. Five subjects carried out four functional movements (fine pinch, tripod grip and grip with the middle and thumb finger, as well as the power grip). Hand dynamometer has been used to record the EMG activity from three muscles namely; Flexor Carpi Radialis (FCR), Flexor Digitorum Superficialis (FDS), and Abductor Pollicis Brevis (ABP) with different
... Show MoreType 2 diabetes mellitus(T2DM) is a metabolic disease that is associated with an increased risk for atherosclerosis by 2-4 folds than in non- diabetics. In general population, low IGF-1 has been associated with higher prevalence of cardiovascular disease and mortality .This study aims to find out the relationship between IGF-1 level and other biochemical markers such as Homeostasis Model Assessment insulin resistance(HOMAIR) and Body Mass Index(BMI) in type 2 diabetic patients . This study includes (82) patients (40 females and 42 males) with age range (40-75) years,(34) non obese diabetic patients and (48) obese diabetic patients. The non obese individuals considered
... Show MoreDepletion of fossil fuel is one of the main reasons why the bioethanol has become popular. It is a renewable energy source. In order to meet the great demand of bioethanol, it is best that the bioethanol production is from cheap raw materials. Since the golden shower fruit is not being utilized and is considered as waste material, hence, this study was conducted to make use of the large volume of the residue as feedstock to test its potential for bioethanol extraction.The main goal of this study is to obtain the most volume of bioethanol from the golden shower fruit liquid residue by the factors, days of fermentation (3, 5, and 7 days) and sugar concentration (15, 20 and 25 brix) of the liquid residue. Also, part of the study is to compu
... Show MoreWastewater treatment plants operators prefer to make adjustments because they are more cost effective, to use the existing tank instead of building new ones. In this case an imported materials would be used as bio-loads to increase biomass and thus maintain efficiency as the next organic loading increases.In the present study, a local substance "pumice stone" was used as a biological carrier in the aeration tank, and the experiments were carried out in five stages: without biological carriers, filling ratio of 4%,10%,20%, and25% with pumice stone, the maximum organic loading at each stage (1.1884, 1.2144, 1.9432, 2.7768, 3.3141)g BOD /l.d respectively.Other experiments were carried out to determine the best filling ratio, the SS remova
... Show MoreIn the present work, the behavior of thick-walled cylinder of elasto-plastic material (polymeric material) has been studied analytically. The study is based on modified Von-Mises yield criterion (for non metallic material). The equations of stress distribution are obtained for the cylinder under general cases of elastic expansion, plastic initiation and elastic-plastic expansion.
A computer program is developed for evaluating the stress distribution. The solution is carried out for worst boundary conditions when the cylinder is subjected to the combination of pressure load, inertia load, and temperature gradient.
The results are presente
... Show MoreThe ligand 2-[1-(1H-indol-3-yl)ethylimino) methyl]naphthalene-1-ol, derived from 1-hydroxy-2-naphthaldehyde and 2-(1H-indol-3-yl)ethylamine, was used to produce a new sequence of metal ions complexes. Thus ligand reactions with NiCl2.6H2O, PdCl2, FeCl3.6H2O and H2PtCl6.6H2O were sequentially made to collect mono-nuclear Ni(II), Pd(II), Fe (III), and Pt(IV). (IR or FTIR), Ultraviolet Reflective (UV–visible), Mass Spectra analysis, Bohr-magnetic (B.M.), metal content, chloride content and molar conductivity have been the defining features of the composites. The Fe(III) and Pt(IV) complexes have octahedral geometries, while the Ni(II) complex has tetra
... Show MoreSince the COVID-19 pandemic alarm was made by the severe acute respiratory syndrome (SARS)-coronavirus (CoV) 2, several institutions and agencies have pursued to clarify the viral virulence and infectivity. The fast propagation of this virus leads to an unprecedented rise in the number of cases worldwide. COVID-19 virus is exceptionally contagious that spreads through droplets, respiratory secretions, and direct contact. The enveloped, single-stranded RNA virus has a specific envelop region called (S) region encoding (S protein) that specifically binds to the host cell receptor. Viral infection requires receptors' participation on the host cell membrane's surface, a key- step for the viral invasion of susceptible cells.
Rec
... Show MoreDetecting protein complexes in protein-protein interaction (PPI) networks is a challenging problem in computational biology. To uncover a PPI network into a complex structure, different meta-heuristic algorithms have been proposed in the literature. Unfortunately, many of such methods, including evolutionary algorithms (EAs), are based solely on the topological information of the network rather than on biological information. Despite the effectiveness of EAs over heuristic methods, more inherent biological properties of proteins are rarely investigated and exploited in these approaches. In this paper, we proposed an EA with a new mutation operator for complex detection problems. The proposed mutation operator is formulate
... Show More