Preferred Language
Articles
/
bsj-8564
Detection of Autism Spectrum Disorder Using A 1-Dimensional Convolutional Neural Network
...Show More Authors

Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D CNNs have shown improved accuracy in the classification of ASD compared to traditional machine learning algorithms, on all these datasets with higher accuracy of 99.45%, 98.66%, and 90% for Autistic Spectrum Disorder Screening in Data for Adults, Children, and Adolescents respectively as they are better suited for the analysis of time series data commonly used in the diagnosis of this disorder

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
DYNAMIC MODELING FOR DISCRETE SURVIVAL DATA BY USING ARTIFICIAL NEURAL NETWORKS AND ITERATIVELY WEIGHTED KALMAN FILTER SMOOTHING WITH COMPARISON
...Show More Authors

Survival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re

... Show More
Preview PDF
Scopus (1)
Scopus
Publication Date
Thu Nov 01 2018
Journal Name
International Journal Of Science And Research (ij
Mathematical Models for Predicting of Organic and Inorganic Pollutants in Diyala River Using AnalysisNeural Network
...Show More Authors

Diyala river is the most important tributaries in Iraq, this river suffering from pollution, therefore, this research aimed to predict organic pollutants that represented by biological oxygen demand BOD, and inorganic pollutants that represented by total dissolved solids TDS for Diyala river in Iraq, the data used in this research were collected for the period from 2011-2016 for the last station in the river known as D17, before the river meeting Tigris river in Baghdad city. Analysis Neural Network ANN was used in order to find the mathematical models, the parameters used to predict BOD were seven parameters EC, Alk, Cl, K, TH, NO3, DO, after removing the less importance parameters. While the parameters that used to predict TDS were fourte

... Show More
Publication Date
Tue Apr 02 2024
Journal Name
Advances In Systems Science And Applications
A New Face Swap Detection Technique for Digital Images
...Show More Authors

View Publication
Scopus
Publication Date
Sat Jul 31 2021
Journal Name
Iraqi Journal Of Science
A Decision Tree-Aware Genetic Algorithm for Botnet Detection
...Show More Authors

     In this paper, the botnet detection problem is defined as a feature selection problem and the genetic algorithm (GA) is used to search for the best significant combination of features from the entire search space of set of features. Furthermore, the Decision Tree (DT) classifier is used as an objective function to direct the ability of the proposed GA to locate the combination of features that can correctly classify the activities into normal traffics and botnet attacks. Two datasets  namely the UNSW-NB15 and the Canadian Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS2017), are used as evaluation datasets. The results reveal that the proposed DT-aware GA can effectively find the relevant features from

... Show More
Scopus (7)
Crossref (2)
Scopus Crossref
Publication Date
Sun Oct 15 2023
Journal Name
Journal Of Yarmouk
Artificial Intelligence Techniques for Colon Cancer Detection: A Review
...Show More Authors

Publication Date
Fri Mar 23 2018
Journal Name
Entropy
Methods and Challenges in Shot Boundary Detection: A Review
...Show More Authors

View Publication
Scopus (65)
Crossref (58)
Scopus Clarivate Crossref
Publication Date
Tue Apr 30 2024
Journal Name
Iraqi Journal Of Science
Credit Card Fraud Detection Challenges and Solutions: A Review
...Show More Authors

     Credit card fraud has become an increasing problem due to the growing reliance on electronic payment systems and technological advances that have improved fraud techniques. Numerous financial institutions are looking for the best ways to leverage technological advancements to provide better services to their end users, and researchers used various protection methods to provide security and privacy for credit cards. Therefore, it is necessary to identify the challenges and the proposed solutions to address them.  This review provides an overview of the most recent research on the detection of fraudulent credit card transactions to protect those transactions from tampering or improper use, which includes imbalance classes, c

... Show More
Scopus (13)
Crossref (15)
Scopus Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Indoor/Outdoor Deep Learning Based Image Classification for Object Recognition Applications
...Show More Authors

With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se

... Show More
View Publication Preview PDF
Scopus (6)
Scopus Crossref
Publication Date
Wed Jun 26 2019
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Synthesis of Acetylenic Derivatives of a Substituted 1, 3, 4-Thiadiazole as Antibacterial Agents
...Show More Authors

View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Mon Jun 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Image Zooming Using Inverse Slantlet Transform
...Show More Authors

Digital image is widely used in computer applications. This paper introduces a proposed method of image zooming based upon inverse slantlet transform and image scaling. Slantlet transform (SLT) is based on the principle of designing different filters for different scales.

      First we apply SLT on color image, the idea of transform color image into slant, where large coefficients are mainly the   signal and smaller one represent the noise. By suitably modifying these coefficients , using scaling up image by  box and Bartlett filters so that the image scales up to 2X2 and then inverse slantlet transform from modifying coefficients using to the reconstructed image .

  &nbs

... Show More
View Publication Preview PDF