Preferred Language
Articles
/
bsj-8564
Detection of Autism Spectrum Disorder Using A 1-Dimensional Convolutional Neural Network
...Show More Authors

Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D CNNs have shown improved accuracy in the classification of ASD compared to traditional machine learning algorithms, on all these datasets with higher accuracy of 99.45%, 98.66%, and 90% for Autistic Spectrum Disorder Screening in Data for Adults, Children, and Adolescents respectively as they are better suited for the analysis of time series data commonly used in the diagnosis of this disorder

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
Iron (II) Determination in Lipstick Samples using Spectrophotometric and Microfluidic Paper-based Analytical Device (µPADs) Platform via Complexation Reaction with Iron Chelator 1, 10-phenanthroline: A Comparative Study
...Show More Authors

This study was undertaken to introduce a fast, accurate, selective, simple and environment-friendly colorimetric method to determine iron (II) concentration in different lipstick brands imported or manufactured locally in Baghdad, Iraq. The samples were collected from 500-Iraqi dinars stores to establish routine tests using the spectrophotometric method and compared with a new microfluidic paper-based analytical device (µPAD) platform as an alternative to cost-effective conventional instrumentation such as Atomic Absorption Spectroscopy (AAS). This method depends on the reaction between iron (II) with iron(II) selective chelator 1, 10-phenanthroline(phen) in the presence of reducing agent hydroxylamine (HOA) and sodium acetate (NaOAc) b

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sun Jun 30 2024
Journal Name
International Journal Of Intelligent Engineering And Systems
Development of Intelligent Control Strategy for an Anesthesia System Based on Radial Basis Function Neural Network Like PID Controller
...Show More Authors

View Publication
Scopus (2)
Scopus Crossref
Publication Date
Fri Dec 06 2019
Journal Name
Ssociation Of Arab Universities Journal Of Engineering Sciences
Application of Artificial Neural Network and GeographicalInformation System Models to Predict and Evaluate the Quality ofDiyala River Water, Iraq
...Show More Authors

This research discusses application Artificial Neural Network (ANN) and Geographical InformationSystem (GIS) models on water quality of Diyala River using Water Quality Index (WQI). Fourteen water parameterswere used for estimating WQI: pH, Temperature, Dissolved Oxygen, Orthophosphate, Nitrate, Calcium, Magnesium,Total Hardness, Sodium, Sulphate, Chloride, Total Dissolved Solids, Electrical Conductivity and Total Alkalinity.These parameters were provided from the Water Resources Ministryfrom seven stations along the river for the period2011 to 2016. The results of WQI analysis revealed that Diyala River is good to poor at the north of Diyala provincewhile it is poor to very polluted at the south of Baghdad City. The selected parameters wer

... Show More
Publication Date
Thu Oct 01 2020
Journal Name
Journal Of Engineering Science And Technology
Automatic voice activity detection using fuzzy-neuro classifier
...Show More Authors

Voice Activity Detection (VAD) is considered as an important pre-processing step in speech processing systems such as speech enhancement, speech recognition, gender and age identification. VAD helps in reducing the time required to process speech data and to improve final system accuracy by focusing the work on the voiced part of the speech. An automatic technique for VAD using Fuzzy-Neuro technique (FN-AVAD) is presented in this paper. The aim of this work is to alleviate the problem of choosing the best threshold value in traditional VAD methods and achieves automaticity by combining fuzzy clustering and machine learning techniques. Four features are extracted from each speech segment, which are short term energy, zero-crossing rate, auto

... Show More
View Publication Preview PDF
Scopus (7)
Scopus
Publication Date
Sun Sep 01 2019
Journal Name
Baghdad Science Journal
Detection a New Antiseptic Resistant Variant of qac Gene in Some Multi Drug Resistant Staphylococcus aureus Isolated from Different Clinical Sources
...Show More Authors

The increasing use of antiseptic compounds creates selective pressure cause emergence of antiseptic resistance among Staphylococcus aureus .Resistance mechanism of antiseptic is driven mainly by multi drug resistant (MDR) efflux protein.Sixty five isolates of S.aureuswere collected from different clinical sources and subjected to 11 antibiotics most of them are recognized by efflux systems as extruded substrates. Range of efflux activity was estimated using cartwheel method. Simultaneous discrimination of antiseptic coding genes (qacA/B, smr and norA)as well as nuc and mecA genes among multidrug resistantS.aureus(MRSA) isolates was preformed using multiplex PCR assay

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Baghdad Science Journal
Mobile-based Telemedicine Application using SVD and F-XoR Watermarking for Medical Images
...Show More Authors

A medical- service platform is a mobile application through which patients are provided with doctor’s diagnoses based on information gleaned from medical images. The content of these diagnostic results must not be illegitimately altered during transmission and must be returned to the correct patient. In this paper, we present a solution to these problems using blind, reversible, and fragile watermarking based on authentication of the host image. In our proposed algorithm, the binary version of the Bose_Chaudhuri_Hocquengham (BCH) code for patient medical report (PMR) and binary patient medical image (PMI) after fuzzy exclusive or (F-XoR) are used to produce the patient's unique mark using secret sharing schema (SSS). The patient’s un

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
A Proposed Agent System for Network Monitoring
...Show More Authors

The traditional centralized network management approach presents severe efficiency and scalability limitations in large scale networks. The process of data collection and analysis typically involves huge transfers of management data to the manager which cause considerable network throughput and bottlenecks at the manager side. All these problems processed using the Agent technology as a solution to distribute the management functionality over the network elements. The proposed system consists of the server agent that is working together with clients agents to monitor the logging (off, on) of the clients computers and which user is working on it. file system watcher mechanism is used to indicate any change in files. The results were presente

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
COVID-19 Diagnosis System using SimpNet Deep Model
...Show More Authors

After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings

... Show More
View Publication Preview PDF
Scopus (8)
Scopus Clarivate Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparative Study for the Early Detection of the most Important Factors Leading to Preeclampsia
...Show More Authors

 

The aim of this research is to determine the most important and main factors that lead to Preeclampsia. It is also about finding suitable solutions to eradicate these factors and avoid them in order to prevent getting Preeclampsia. To achieve this, a case study sample of (40) patients from Medical City - Oncology Teaching Hospital was used to collect data by a questionnaire which contained (17) reasons to be investigated. The statistical package (SPSS) was used to compare the results of the data analysis through two methods (Radial Bases Function Network) and (Factorial Analysis). Important results were obtained, the two methods determined the same factors that could represent the direct reason which causes Preecla

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Feb 29 2024
Journal Name
International Journal Of Design & Nature And Ecodynamics
Artificial Neural Network Assessment of Groundwater Quality for Agricultural Use in Babylon City: An Evaluation of Salinity and Ionic Composition
...Show More Authors

View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Crossref