Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D CNNs have shown improved accuracy in the classification of ASD compared to traditional machine learning algorithms, on all these datasets with higher accuracy of 99.45%, 98.66%, and 90% for Autistic Spectrum Disorder Screening in Data for Adults, Children, and Adolescents respectively as they are better suited for the analysis of time series data commonly used in the diagnosis of this disorder
A new Schiff base [1-((2-(1H-indol-3-yl)ethylimino)methyl)naphthalene-2-ol] (HL) has been synthesized by condensing (2-hydroxy-1-naphthaldehyde) with (2-(1H-indol-3-yl)ethylamine). In turn, its transition metal complexes were prepared having the general formula; [Pt(IV)Cl2(L)2], [Re(V)Cl2(L)2]Cl and [Pd(L)2], 2K[M(II)Cl2(L)2] where M(II) = Co, Ni, Cu] are reported. Ligand as well as metal complexes are characterized by spectroscopic techniques such as FT-IR, UV-visible, 13C & 1H NMR, mass, elemental analysis. The results suggested that the ligand behaves like a bidentate ligand for all the synthesized complexes. On the other hand, theoretical studies of the ligand as well its metal complexes were conducted at gas phase using Hyp
... Show MoreSoftware-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne
... Show MoreThe virulent genes are the key players in the ability of the bacterium to cause disease. The products of such genes that facilitate the successful colonization and survival of the bacterium in or cause damage to the host are pathogenicity determinants. This study aimed to investigate the prevalence of virulence factors (esp, agg, gelE, CylA) in E. faecalis isolated from diverse human clinical collected in Iraqi patient , as well as to assess their ability to form biofilm and to determine their haemolytic and gelatinase activities. Thirty-two isolates of bacteria Enterococcus faecalis were obtained, including 15 isolates (46.87%) of the urine, 6 isolates (18.75%) for each of the stool and uterine secretions, and 5 isolates (15.62%) of the wo
... Show MoreBackground: Osteoporosis is denoted by low bone mass and microarchitectural breakdown of bone tissue, directing to increased fracture risk and bone fragility. Fractures may lead to a decreased quality of life and increased medical costs. Thus, osteoporosis is widely considered a significant health concern.
Objective. This study aimed to compare quantitative computed tomography (QCT) and dual-energy X-Ray absorptiometry (DXA) to detect osteoporosis in postmenopausal women.
Subjects and Methods. We measured spinal volumetric bone mineral density (BMD) with QCT and areal spinal and hip BMD with DXA in 164 postmenopausal women. We calculated the osteo
... Show MoreRecently, there has been an increase in the prevalence of ulcerative colitis (UC), and inflammatory bowel diseases (IBD) worldwide, especially in certain recently industrialized countries like China and In¬dia. Globally, the prevalence of UC, a chronic illness that affects the large intestine, is rising. Fifty adherent invasive Escherichia coli (AIEC) isolates were identified from ulcerative colitis biopsy samples originating from the Gastrointestinal tract (GIT) and Hepatology teaching hospitals/medical city in Baghdad City. The test’s results demonstrated that the AIEC isolates had a high level of resistance to the majority of the an-tibiotics under investigation. Enterobacterial Repetitive Intergenic Consensus (ERIC-PCR) and m
... Show More
Abstract:
We can notice cluster data in social, health and behavioral sciences, so this type of data have a link between its observations and we can express these clusters through the relationship between measurements on units within the same group.
In this research, I estimate the reliability function of cluster function by using the seemingly unrelate
... Show MoreRecognition is one of the basic characteristics of human brain, and also for the living creatures. It is possible to recognize images, persons, or patterns according to their characteristics. This recognition could be done using eyes or dedicated proposed methods. There are numerous applications for pattern recognition such as recognition of printed or handwritten letters, for example reading post addresses automatically and reading documents or check reading in bank.
One of the challenges which faces researchers in character recognition field is the recognition of digits, which are written by hand. This paper describes a classification method for on-line handwrit
... Show Moreتقدير النموذج اللوجستي باستخدام اوزان بيز المتسلسل