Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D CNNs have shown improved accuracy in the classification of ASD compared to traditional machine learning algorithms, on all these datasets with higher accuracy of 99.45%, 98.66%, and 90% for Autistic Spectrum Disorder Screening in Data for Adults, Children, and Adolescents respectively as they are better suited for the analysis of time series data commonly used in the diagnosis of this disorder
This paper proposes a new approach to model and analyze erect posture, based on a spherical inverted pendulum which is used to mimic the body posture. The pendulum oscillates in two directions, [Formula: see text] and [Formula: see text], from which the mathematical model was derived and two torque components in oscillation directions were introduced. They are estimated using stabilometric data acquired by a foot pressure mapping system. The model was quantitatively investigated using data from 19 participants, who were first were classified into three groups, according to the foot arch-index. Stabilometric data were then collected and fed into the model to estimate the torque’s components. The components were statistically proce
... Show MoreThis study is unique in this field. It represents a mix of three branches of technology: photometry, spectroscopy, and image processing. The work treats the image by treating each pixel in the image based on its color, where the color means a specific wavelength on the RGB line; therefore, any image will have many wavelengths from all its pixels. The results of the study are specific and identify the elements on the nucleus’s surface of a comet, not only the details but also their mapping on the nucleus. The work considered 12 elements in two comets (Temple 1 and 67P/Churyumoy-Gerasimenko). The elements have strong emission lines in the visible range, which were recognized by our MATLAB program in the treatment of the image. The percen
... Show MoreAbstract
The vegetative filter strips (VFS) are a useful tool used for reducing the movement of sediment and pesticide in therivers. The filter strip’s soil can help in reducing the runoff volume by infiltration. However, the characteristics of VFS (i.e., length) are not recently identified depending on the estimation of VFS modeling performance. The aim of this research is to study these characteristics and determine acorrelation between filter strip length and percent reduction (trapping efficiency) for sediment, water, and pesticide. Two proposed pesticides(one has organic carbon sorption coefficient, Koc, of 147 L/kg which is more moveable than XXXX, and another one
... Show MoreVideo steganography has become a popular option for protecting secret data from hacking attempts and common attacks on the internet. However, when the whole video frame(s) are used to embed secret data, this may lead to visual distortion. This work is an attempt to hide sensitive secret image inside the moving objects in a video based on separating the object from the background of the frame, selecting and arranging them according to object's size for embedding secret image. The XOR technique is used with reverse bits between the secret image bits and the detected moving object bits for embedding. The proposed method provides more security and imperceptibility as the moving objects are used for embedding, so it is difficult to notice the
... Show MoreIn the recent years the research on the activated carbon preparation from agro-waste and byproducts have been increased due to their potency for agro-waste elimination. This paper presents a literature review on the synthesis of activated carbon from agro-waste using microwave irradiation method for heating. The applicable approach is highlighted, as well as the effects of activation conditions including carbonization temperature, retention period, and impregnation ratio. The review reveals that the agricultural wastes heated using a chemical process and microwave energy can produce activated carbon with a surface area that is significantly higher than that using the conventional heating method.
This work evaluates the influence of combining twisted fins in a triple-tube heat exchanger utilised for latent heat thermal energy storage (LHTES) in three-dimensional numerical simulation and comparing the outcome with the cases of the straight fins and no fins. The phase change material (PCM) is in the annulus between the inner and the outer tube, these tubes include a cold fluid that flows in the counter current path, to solidify the PCM and release the heat storage energy. The performance of the unit was assessed based on the liquid fraction and temperature profiles as well as solidification and the energy storage rate. This study aims to find suitable and efficient fins number and the optimum values of the Re and the inlet tem
... Show MoreCrime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o
The research aims to measure the extent of the impact of Earnings quality in the continuity of the company for a sample of private commercial banks listed on the Iraq Stock Exchange. The research sample included (15) of the listed commercial banks that continue to issue their financial statements for the period from (2009-2018).The research relied on three main models of measurement and on four steps. The first step is to measure the Persistence (Earnings Quality) by Depending the sustainability model. While the second step included measuring the Predictability of accounting profits by deriving the square root of the disparity of the estimation error from the first model Persistence (Earnings Quality), and the third step included
... Show More