Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D CNNs have shown improved accuracy in the classification of ASD compared to traditional machine learning algorithms, on all these datasets with higher accuracy of 99.45%, 98.66%, and 90% for Autistic Spectrum Disorder Screening in Data for Adults, Children, and Adolescents respectively as they are better suited for the analysis of time series data commonly used in the diagnosis of this disorder
Cerebral palsy "is one of the diseases that afflict children, and it is a term given to the condition of a child who is exposed to a normal brain injury by accident due to its inability to grow or damage to the cells of the areas responsible for movement and knowledge of strength and balance during the stage of normal development." (116: 1999: 10) Cerebral palsy causes disruption in movement and posture due to damage to brain cells in areas that control and coordinate muscle tone, reflexes, strength, and movement. The degree and location of brain damage varies greatly between people with paralysis, as well as the severity of disability and symptoms, as they fall into severe to very simple, and cerebral palsy is one of the diseases that caus
... Show MoreThis paper presents a comparison between the electroencephalogram (EEG) channels during scoliosis correction surgeries. Surgeons use many hand tools and electronic devices that directly affect the EEG channels. These noises do not affect the EEG channels uniformly. This research provides a complete system to find the least affected channel by the noise. The presented system consists of five stages: filtering, wavelet decomposing (Level 4), processing the signal bands using four different criteria (mean, energy, entropy and standard deviation), finding the useful channel according to the criteria’s value and, finally, generating a combinational signal from Channels 1 and 2. Experimentally, two channels of EEG data were recorded fro
... Show MoreThis study focused on treatment of real wastewater rejected from leather industry in Al-Nahrawan city in Iraq by Electrocoagulation (EC) process followed by Reverse Osmosis (RO) process. The successive treatment was applied due to high concentration of Cr3+ ions (about 1600 ppm) rejected in wastewater of this industry and for applying EC with moderate power consumption and better results of produced water. In Electrocoagulation process (EC), the effect of NaCl concentration (1.5, 3 g/l), current density (C.D.) (15-25 mA/cm2), electrolysis time (1-2 h), and distance between electrodes (E.D.) (1-2 cm) were examined in a batch cell by implementing Taguchi experimental design. According to the results obtained from multiple regression and signa
... Show MoreThis deals with estimation of Reliability function and one shape parameter (?) of two- parameters Burr – XII , when ?(shape parameter is known) (?=0.5,1,1.5) and also the initial values of (?=1), while different sample shze n= 10, 20, 30, 50) bare used. The results depend on empirical study through simulation experiments are applied to compare the four methods of estimation, as well as computing the reliability function . The results of Mean square error indicates that Jacknif estimator is better than other three estimators , for all sample size and parameter values
Multilateral wells require a sophisticated type of well model to be applied in reservoir simulators to represent them. The model must be able to determine the flow rate of each fluid and the pressure throughout the well. The production rate calculations are very important because they give an indication about some main issues associated with multi-lateral wells such as one branch may produce water or gas before others, no production rate from one branch, and selecting the best location of a new branch for development process easily.  
... Show MoreA simple and novel membraneless paper-based microfluidic fuel cell was presented in this study. The occurrence of laminar flow was employed to ensure no mixing of the fuel and oxidant fluids along the bath of reaction. The acidic wastewater was used as a fuel. It was an air-breathing cell, so air and tab water were used as oxidants. Both the fuel and tab water flowed continuously under gravity. Whatman filter paper was used for preparation of the fuel cell channel and two carbon fibre electrodes were used and firmed on the edges of the cell. The performance of the cell was examined over three consecutive days. The results indicated that the present cell has the potential to generate electric power, but an extensive study is required to harv
... Show MoreCanonical correlation analysis is one of the common methods for analyzing data and know the relationship between two sets of variables under study, as it depends on the process of analyzing the variance matrix or the correlation matrix. Researchers resort to the use of many methods to estimate canonical correlation (CC); some are biased for outliers, and others are resistant to those values; in addition, there are standards that check the efficiency of estimation methods.
In our research, we dealt with robust estimation methods that depend on the correlation matrix in the analysis process to obtain a robust canonical correlation coefficient, which is the method of Biwe
... Show More