Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D CNNs have shown improved accuracy in the classification of ASD compared to traditional machine learning algorithms, on all these datasets with higher accuracy of 99.45%, 98.66%, and 90% for Autistic Spectrum Disorder Screening in Data for Adults, Children, and Adolescents respectively as they are better suited for the analysis of time series data commonly used in the diagnosis of this disorder
Abstract
The current research aims to identify the effect of using a model of generative learning in the achievement of first-middle students of chemical concepts in science. The researcher adopted the null hypothesis, which is there is no statistically significant difference at the level (0.05) between the mean scores of the experimental group who study using the generative learning model and the average scores of the control group who study using the traditional method in the chemical concepts achievement test. The research consisted of (200) students of the first intermediate at Al-Farqadin Intermediate School for Boys affiliated with the Directorate of General Education in Baghdad Governorate / Al-Karkh 3 wit
... Show MoreIn this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho
... Show MoreActivated carbon was Produced from coconut shell and was used for removing sulfate from industrial waste water in batch Processes. The influence of various parameter were studied such as pH (4.5 – 9.) , agitation time (0 – 120)min and adsorbent dose (2 – 10) gm.
The Langmuir and frandlich adsorption capacity models were been investigated where showed there are fitting with langmmuir model with squre regression value ( 0.76). The percent of removal of sulfate (22% - 38%) at (PH=7) in the isotherm experiment increased with adsorbent mass increasing. The maximum removal value of sulfate at different pH experiments is (43%) at pH=7.
لقد كان للثورة الرقمية التي ظهرت في القرن العشرين أثر في إحداث تأثيرات جذرية تضمنت نواحي الحياة المختلفة، خصوصًا في المجال الإقتصادي، والتي تمثلت بثلاث صور ( الذكاء الإصطناعيArtificial Intelligence( AI) وإنترنت الأشياء Internet of Things والبيانات الضخمة Big Data ، وفيما يتعلق بالذكاء الإصطناعي، فقد تم إكتشافهُ في منتصف خمسينات القرن الماضي الذي تعد الولادة الحقيقية لهُ في المؤتمر الذي نُظم في الولايات المتحدة الأمريكية على يد
... Show MoreTo determine the relationship between Helicobacter pylori infection and skin disorders, sixty six patients who suffering from skin diseases include chronic urticarial (CU) and atopic dermatitis (AD) who attended at Dermatological Clinic/ Al-Numan Teaching Hospital from the beginning of October 2015 to the end of January 2016 with age (6-62) have been investigated and compared to twenty two samples of apparently healthy individuals were studied as control group. All the studied groups were subjected to measurement of antiHelicobacter pylori IgG antibodies by enzyme linked immuno sorbent assay (ELISA) and detection of 16S rRNA and CagA genes by using singleplex and multiplex PCR methods. The results of current study revealed that there was a
... Show More