Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D CNNs have shown improved accuracy in the classification of ASD compared to traditional machine learning algorithms, on all these datasets with higher accuracy of 99.45%, 98.66%, and 90% for Autistic Spectrum Disorder Screening in Data for Adults, Children, and Adolescents respectively as they are better suited for the analysis of time series data commonly used in the diagnosis of this disorder
The syntheses, characterization and experimental solid state X-ray structures of five low-spin paramagnetic 2-pyridyl-(1,2,3)-triazole-copper compounds, [Cu(Ln)2Cl2], are presented in this study, for the following five Ln ligands: L1 = 2-(1-(p-tolyl)-1H-(1,2,3-triazol-4-yl)pyridine), L2 = 2-(1-(4- chlorophenyl)-1H-(1,2,3-triazol-4-yl)pyridine), L3 = 4-(4-(pyridin-2-yl)-1H-(1,2,3-triazol-4-yl)benzonitril), L4 = 2-(1-phenyl-1H-(1,2,3-triazol-4-yl)pyridine) and L5 = 2-(1-(4-(trifluoromethyl)phenyl)-1H-(1,2,3- triazol-4-yl)pyridine). These five [Cu(Ln)2Cl2] complexes each contain two bidentate 2-pyridyl-(1,2,3)- triazole (Ln) and two chloride ions as ligands, with the Cu–N(pyridine) bonds, Cu–N(triazole) and Cu–Cl bonds trans to each othe
... Show MoreOptimum perforation location selection is an important study to improve well production and hence in the reservoir development process, especially for unconventional high-pressure formations such as the formations under study. Reservoir geomechanics is one of the key factors to find optimal perforation location. This study aims to detect optimum perforation location by investigating the changes in geomechanical properties and wellbore stress for high-pressure formations and studying the difference in different stress type behaviors between normal and abnormal formations. The calculations are achieved by building one-dimensional mechanical earth model using the data of four deep abnormal wells located in Southern Iraqi oil fields. The magni
... Show MoreThe recurrent somatic variations in
The aim of the study was to detect the frequency of R132 mutations in the
Type 1 diabetes (T1D) is an autoimmune disease with chronic nature resulting from a combination of both factors genetic and environmental. The genetic contributors of T1D among Iraqis are unexplored enough. The study aimed to shed a light on the contribution between genetic variation of interleukin2 (IL2) gene to T1D as a risk influencer in a sample of Iraqi patients. The association between IL2−330 polymorphism (rs2069762) was investigated in 322 Iraqis (78 T1D patients and 244 volunteers as controls). Genotyping for the haplotypes using polymerase chain reaction test – specific sequence primer (PCR-SSP) for (GG, GT, and TT) genotypes corresponding to (G and T) alleles were performed. A significant association revealed a decreased freq
... Show MoreGender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea
... Show MoreThe research aimed at designing a rehabilitation program using electric stimulation for rehabilitating knee joint working muscles as a result of ACL tear using an apparatus developed by the researchers that stimulate the muscle vibration and work as well as the ability to rehabilitate the join in shorter periods. In addition to that, it aimed at identifying the effect of this program on rehabilitating the knee joint working muscles. The researchers used the experimental method on Baghdad clubs’ players who suffer from complete knee joint ACL tear aged (19 – 24) years old. The results showed that the training program developed the working muscles significantly achieving normal levels of activity.
Credit risk assessment has become an important topic in financial risk administration. Fuzzy clustering analysis has been applied in credit scoring. Gustafson-Kessel (GK) algorithm has been utilised to cluster creditworthy customers as against non-creditworthy ones. A good clustering analysis implemented by good Initial Centres of clusters should be selected. To overcome this problem of Gustafson-Kessel (GK) algorithm, we proposed a modified version of Kohonen Network (KN) algorithm to select the initial centres. Utilising similar degree between points to get similarity density, and then by means of maximum density points selecting; the modified Kohonen Network method generate clustering initial centres to get more reasonable clustering res
... Show MoreNowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermor
... Show MoreLaser skin wound soldering offers many distinct advantages over conventional closure and laser welding techniques. Objective : to compare the histological effects of human skin wound soldering using 50 % human albumin solder and compound charcoal photosensitiser with 980 nm diode laser acting in various modes of action and parameters. Study Design/Materials and Methods: In this in vitro experimental study , Multiple 3-4 cm long full thickness incisions in a specimen of human skin were soldered using a 4 mm spot diameter beam of 980 nm diode laser(at different laser parameters and modes of action) with 50 % human albumin solder mixed with the compound charcoal at 5 % W/V concentration .After obtaining a successful wound soldering , the wo
... Show MoreThe current research aims to shed light on the Global Reporting Initiative (GRI), which helps to report financial and non-financial information by economic units in general and listed on the Iraq Stock Exchange in particular. The research was based on a main premise that apply the criteria of the Global Reporting Initiative (GRI) would provide useful information to users to help them make appropriate decisions. To achieve the goal of the research, the descriptive analysis method was used, and quantitative analysis was used. At the level of the descriptive analysis method, a desk survey was conducted. As for the quantitative analysis, it relied on applied data through a questionnaire form (Questioners) as a research tool, and the
... Show More