Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D CNNs have shown improved accuracy in the classification of ASD compared to traditional machine learning algorithms, on all these datasets with higher accuracy of 99.45%, 98.66%, and 90% for Autistic Spectrum Disorder Screening in Data for Adults, Children, and Adolescents respectively as they are better suited for the analysis of time series data commonly used in the diagnosis of this disorder
The main objective of this study is to measure the Impact of global financial crisis on some indicators of the Saudi Arabia's economy using the Mendel-Fleming model, the importance of the study applied by focusing on the theme of general equilibrium in the face of fluctuations in the global economy. Study used a descriptive approach and the methodology of econometrics to construct the model. Study used Eviews Program for data analysis. The Data was collected from the Saudi Arabian Monetary Agency, for the period (1997-2014).Stationery of the variables was checked by Augmented Dickey-Fuller (ADF) and Phillips Perron (PP) unit roots tests. And also the co-integration
... Show MoreMany academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Tre
... Show MoreFractal image compression depends on representing an image using affine transformations. The main concern for researches in the discipline of fractal image compression (FIC) algorithm is to decrease encoding time needed to compress image data. The basic technique is that each portion of the image is similar to other portions of the same image. In this process, there are many models that were developed. The presence of fractals was initially noticed and handled using Iterated Function System (IFS); that is used for encoding images. In this paper, a review of fractal image compression is discussed with its variants along with other techniques. A summarized review of contributions is achieved to determine the fulfillment of fractal ima
... Show MoreThe sensitive and important data are increased in the last decades rapidly, since the tremendous updating of networking infrastructure and communications. to secure this data becomes necessary with increasing volume of it, to satisfy securing for data, using different cipher techniques and methods to ensure goals of security that are integrity, confidentiality, and availability. This paper presented a proposed hybrid text cryptography method to encrypt a sensitive data by using different encryption algorithms such as: Caesar, Vigenère, Affine, and multiplicative. Using this hybrid text cryptography method aims to make the encryption process more secure and effective. The hybrid text cryptography method depends on circular queue. Using circ
... Show MoreInformation security is a crucial factor when communicating sensitive information between two parties. Steganography is one of the most techniques used for this purpose. This paper aims to enhance the capacity and robustness of hiding information by compressing image data to a small size while maintaining high quality so that the secret information remains invisible and only the sender and recipient can recognize the transmission. Three techniques are employed to conceal color and gray images, the Wavelet Color Process Technique (WCPT), Wavelet Gray Process Technique (WGPT), and Hybrid Gray Process Technique (HGPT). A comparison between the first and second techniques according to quality metrics, Root-Mean-Square Error (RMSE), Compression-
... Show MoreMany academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Deci
... Show MoreIn this paper we investigate the automatic recognition of emotion in text. We propose a new method for emotion recognition based on the PPM (PPM is short for Prediction by Partial Matching) character-based text compression scheme in order to recognize Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method is very effective when compared with traditional word-based text classification methods. We have also found that our method works best if the sizes of text in all classes used for training are similar, and that performance significantly improves with increased data.
In today's digital era, the importance of securing information has reached critical levels. Steganography is one of the methods used for this purpose by hiding sensitive data within other files. This study introduces an approach utilizing a chaotic dynamic system as a random key generator, governing both the selection of hiding locations within an image and the amount of data concealed in each location. The security of the steganography approach is considerably improved by using this random procedure. A 3D dynamic system with nine parameters influencing its behavior was carefully chosen. For each parameter, suitable interval values were determined to guarantee the system's chaotic behavior. Analysis of chaotic performance is given using the
... Show MoreObjective Using two complementary techniques of virus detection human papillomavirus (HPV)[capture of hybrids (CH) and polymerase chain reaction (PCR)], relate the cytological study and/or cervical biopsy with high-risk HPV (HPV-HR) genotypes presence, as well as relating their viral load (VL). Methods About 272 women, who presented most cell alterations compatible with lesions cervical HPV, which has been detected in all high risk by the CH method and HPV genotype detection by PCR. Results In 22% of the patients it was not detected HPV DNA. Genotype 16 and/or 18 was prevalent and was found in 33% of the 212 women studied, meanwhile, mixed infections were found by several genotypes in 25%. In as for the histological lesions found, in 61 pat
... Show More