Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D CNNs have shown improved accuracy in the classification of ASD compared to traditional machine learning algorithms, on all these datasets with higher accuracy of 99.45%, 98.66%, and 90% for Autistic Spectrum Disorder Screening in Data for Adults, Children, and Adolescents respectively as they are better suited for the analysis of time series data commonly used in the diagnosis of this disorder
<span lang="EN-US">Iraqi people have been without energy for nearly two decades, even though their geographic position provides a high intensity of radiation appropriate for the construction of solar plants capable of producing significant quantities of electricity. Also, the annual sunny hours in Iraq are between 3,600 to 4,300 hours which makes it perfect to use the photovoltaics arrays to generate electricity with very high efficiency compared to many countries, especially in Europe. This paper shows the amount of electric energy generated by the meter square of crystalline silicon in the photovoltaic (PV) array that already installed in 18 states in Iraq for each month of the year. The results of the meter-square of PV arr
... Show MoreThis study aimed to compare lysyl oxidase-1 level in diabetic patients with and without renal dysfunction, that LOX-1 may be an indicator for the early stage of diabetic nephropathy (DN). In addition to finding it is a relationship with kidney functions in Iraqi diabetic patients with and without renal dysfunction. Blood was obtained from 25 healthy individuals as a control group (G1), 25 diabetic patients with renal dysfunction, and 25 diabetic patients without renal dysfunction. Age range 40-60 years for all subjects. BMI (25-27) Kg/m2 . The serum was used for the analysis of LOX-1, FBG, urea, creatinine and uric acid. Whole blood is used for the determination of HbA1C. Results of FBG and HbA1C revealed a significant increase in G2 and G
... Show More