Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid disease predictions. A systematic literature review (SLR) strategy is used in this study to give a comprehensive overview of the existing literature on forecasting data on thyroid disease diagnosed using ML. This study includes 168 articles published between 2013 and 2022, gathered from high-quality journals and applied meta-analysis. The thyroid disease diagnoses (TDD) category, techniques, applications, and solutions were among the many elements considered and researched when reviewing the 41 articles of cited literature used in this research. According to our SLR, the current technique's actual application and efficacy are constrained by several outstanding issues associated with imbalance. In TDD, the technique of ML increases data-driven decision-making. In the Meta-analysis, 168 documents have been processed, and 41 documents on TDD are included for observation analysis. The limits of ML that are discussed in the discussion sections may guide the direction of future research. Regardless, this study predicts that ML-based thyroid disease detection with imbalanced data and other novel approaches may reveal numerous unrealised possibilities in the future
Gastroesophageal reflux disease (GERD) is a prevalent clinical condition, that affects millions of individuals worldwide. Objective: To assess the level of soluble HLA-E (sHLA-E) as a biomarker in the diagnosis and immunopathogenesis of GERD patients. Methods: The case-control prospective study included 40 GERD patients who were consulted at the Gastroenterology Unit of AlKindy Teaching Hospital, as along with 40 healthy control subjects. The study period extended from January 2023 to May 2024. Blood was drawn from both groups and serum was separated to assesssHLA-E using a sandwich enzyme-linked immunosorbent assay (ELISA) kit. Results: There was a statistically significant difference in sHLA-E levels between GERD patients and healthy cont
... Show MoreThis dissertation studies the application of equivalence theory developed by Mona Baker in translating Persian to Arabic. Among various translation methodologies, Mona Baker’s bottom-up equivalency approach is unique in several ways. Baker’s translation approach is a multistep process. It starts with studying the smallest linguistic unit, “the word”, and then evolves above the level of words leading to the translation of the entire text. Equivalence at the word level, i.e., word for word method, is the core point of Baker’s approach.
This study evaluates the use of Baker’s approach in translation from Persian to Arabic, mainly because finding the correct equivalence is a major challenge in this translation. Additionall
... Show Morel
Many water supplies are now contaminated by anthropogenic sources such as domestic and agricultural waste, as well as manufacturing activities, the public's concern about the environmental effects of wastewater contamination has grown. Several traditional wastewater treatment methods, such as chemical coagulation, adsorption, and activated sludge, have been used to eliminate pollution; however, there are several drawbacks, most notably high operating costs, because of its low operating and repair costs, the usage of aerobic waste water treatment as a reductive medium is gaining popularity. Furthermore, it is simple to produce and has a high efficacy and potential to degrade pollu
... Show MoreABSTRACT : Alzheimer’s disease (AD) is one of the most common inflammatory neurodegenerative diseases linked with dementia, it is characterized by the deposition of amyloid beta-peptide (Ab) in the brain. The present study aims to innovate a biochemical relationship between AD and interleukin 38 (IL-38) as an anti-inflammatory cytokine, expose novel mechanisms and concepts regarding other biochemical parameters studied previously or recently in AD patients and also examine the biochemical action of memantine (10 mg daily) on AD patients. Sixty (60) diagnosed AD patients participated in the present study and classified into four (4) groups: G3 were composed of (15) newly diagnosed males (52-78) years / without treatment, G4 composed of (15
... Show MoreCoronary heart disease (CHD) is the leading cause of death in United State (U.S.). Controlling of modifiable risk factors such as smoking, hypertension (HT), diabetes mellitus (D.M.), dyslipidemia, physical inactivity & obesity will prevent other serious cardiovascular complications
Within the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show MoreAbstract The results of isolation, morphological and microscopic diagnosis, Chromic Agar, Vitik technology and Bact Alert showed that the diagnosis of fungi isolated from blood samples of end-stage renal patients who did not undergo dialysis and those who underwent dialysis was 60 samples for each type. The total number of fungal isolates isolated from people who did not undergo dialysis was 26 pathogenic fungal isolates, with a percentage frequency of 43.33%. In this study, 4 genera of pathogenic fungi were identified: Candida spp, Rhodotorula spp, Cryptococcus spp. and Aspergillus spp. The number of Candida isolates reached 13 isolates, with a frequency of 50%. The results also showed that the diagnosed species from the genus Rhodotorula
... Show MoreAbstract
A surface fitting model is developed based on calorimeter data for two famous brands of household compressors. Correlation equations of ten coefficient polynomials were found as a function of refrigerant saturating and evaporating temperatures in range of (-35℃ to -10℃) using Matlab software for cooling capacity, power consumption, and refrigerant mass flow rate.
Additional correlations equations for these variables as a quick choice selection for a proper compressor use at ASHRAE standard that cover a range of swept volume range (2.24-11.15) cm3.
The result indicated that these surface fitting models are accurate with in ± 15% for 72 compressors model of cooling cap
... Show More