Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid disease predictions. A systematic literature review (SLR) strategy is used in this study to give a comprehensive overview of the existing literature on forecasting data on thyroid disease diagnosed using ML. This study includes 168 articles published between 2013 and 2022, gathered from high-quality journals and applied meta-analysis. The thyroid disease diagnoses (TDD) category, techniques, applications, and solutions were among the many elements considered and researched when reviewing the 41 articles of cited literature used in this research. According to our SLR, the current technique's actual application and efficacy are constrained by several outstanding issues associated with imbalance. In TDD, the technique of ML increases data-driven decision-making. In the Meta-analysis, 168 documents have been processed, and 41 documents on TDD are included for observation analysis. The limits of ML that are discussed in the discussion sections may guide the direction of future research. Regardless, this study predicts that ML-based thyroid disease detection with imbalanced data and other novel approaches may reveal numerous unrealised possibilities in the future
Smart thinking requires a continuous flexible systeroatic teaching in order that the lecturer can reach at easily, The Successful individuals in smart thin king are the most knowledgably with it, where the cognitive (intuitive- systematic) style has common bases with another cognitive styles in many traits, and these two concepts are the core of theorization of the rost important cognitive styles. The present study aims to measure the Smart thinking among university lecturers according to sex variable and recognize the statistically differences significance in the level of cognitive (intuitive- systematic) style among the university lecturers according to sex variable and recognize the correlation between smart thinki
... Show MoreThe economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s
... Show MoreA mathematical eco-epidemiological model consisting of harvested prey–predator system involving fear and disease in the prey population is formulated and studied. The prey population is supposed to be separated into two groups: susceptible and infected. The susceptible prey grows logistically, whereas the infected prey cannot reproduce and instead competes for the environment’s carrying capacity. Furthermore, the disease is transferred through contact from infected to susceptible individuals, and there is no inherited transmission. The existence, positivity, and boundedness of the model’s solution are discussed. The local stability analysis is carried out. The persistence requirements are established. The global behavior of th
... Show MoreVascular patterns were seen to be a probable identification characteristic of the biometric system. Since then, many studies have investigated and proposed different techniques which exploited this feature and used it for the identification and verification purposes. The conventional biometric features like the iris, fingerprints and face recognition have been thoroughly investigated, however, during the past few years, finger vein patterns have been recognized as a reliable biometric feature. This study discusses the application of the vein biometric system. Though the vein pattern can be a very appealing topic of research, there are many challenges in this field and some improvements need to be carried out. Here, the researchers reviewed
... Show MoreDBN Rashid, Asian Quarterly: An International Journal of Contemporary Issue, 2018
Purpose: Determining and identifying the relationships of smart strategic education systems and their potential effects on sustainable success in managing clouding electronic business networks according to green, economic and environmental logic based on vigilance and awareness of the strategic mind.
Design: Designing a hypothetical model that reveals the role and investigating audit and cloud electronic governance according to a philosophy that highlights smart strategic learning processes, identifying its assumptions in cloud spaces, choosing its tools, what it costs to devise expert minds, and strategic intelligence.
Methodology:
Abstract: The aim of the research identify the effect of using the five-finger strategy in learning a movement chain on the balance beam apparatus for students in the third stage in the College of Physical Education and Sports Science, as well as to identify which groups (experimental and controlling) are better in learning the kinematic chain on the balance beam device, has been used The experimental approach is to design the experimental and control groups with pre-and post-test. The research sample was represented by third-graders, as the third division (j) was chosen by lot to represent the experimental group, and a division Third (i) to represent the control group, after which (10) students from each division were tested by lot to repr
... Show MoreThe present study aims to estimating the prevalence of autoimmune thyroid disorders in Iraqi infertile women with polycystic ovary syndrome (PCOS). Eighty-five Iraqi women, with age range (19-45) years, were divided into three groups; first group included 33 women with PCOS; second group included 30 women without PCOS; while third group included 22 fertile women as controls. The clinical data [age, body mass index (BMI), and menstrual status] have been recorded. Blood samples were collected to determine the levels of reproductive hormones [estradiol (E2), luteinizing hormone (LH), and follicle stimulating hormone (FSH)]; and thyroid hormones [triiodothyronine (T3) and thyroxin (T4)]. Also, autoimmune thyroid antibodies assessment h
... Show MoreThe study aims to measure the level of academic stress in the e-learning environment in three areas, students and their dealing with classmates, dealing with the professor and technical skills, and the nature and content of the curriculum among graduate students in the College of Education at King Khalid University during COVID-19 pandemic. This study was descriptive in nature (survey, comparative). The sample consisted of (512) male and female graduate students in the master's and doctoral programs. The Academic Stress Scale in the E-learning Environment designed by Amer (2021) was used. The results indicated a high level of academic stress among graduate students in the e-learning environment. The study also found that there were stati
... Show More