Preferred Language
Articles
/
bsj-8544
Exploring the Challenges of Diagnosing Thyroid Disease with Imbalanced Data and Machine Learning: A Systematic Literature Review
...Show More Authors

Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid disease predictions. A systematic literature review (SLR) strategy is used in this study to give a comprehensive overview of the existing literature on forecasting data on thyroid disease diagnosed using ML. This study includes 168 articles published between 2013 and 2022, gathered from high-quality journals and applied meta-analysis. The thyroid disease diagnoses (TDD) category, techniques, applications, and solutions were among the many elements considered and researched when reviewing the 41 articles of cited literature used in this research. According to our SLR, the current technique's actual application and efficacy are constrained by several outstanding issues associated with imbalance. In TDD, the technique of ML increases data-driven decision-making. In the Meta-analysis, 168 documents have been processed, and 41 documents on TDD are included for observation analysis. The limits of ML that are discussed in the discussion sections may guide the direction of future research. Regardless, this study predicts that ML-based thyroid disease detection with imbalanced data and other novel approaches may reveal numerous unrealised possibilities in the future

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Oct 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A study of Hepcidin levels and other Biochemical parameters in woman with Osteoporosis with Type 2 Diabetes Mellitus
...Show More Authors

Background: Diabetes mellitus (DM) could be regarded as a set of chronic metabolic disorders which have a common aspect of hyperglycemia. The resistance in the peripheral actions of insulin or impaired insulin secretion could be the reason  hepcidin which is a peptide hormone derived from liver, in systemic iron homeostasis is an essential regulator, and its lopsided production participates in the pathogenesis of iron disorders in spectrum. Osteoporosis often accompanies many diseases like ß-thalassemia, hemochromatosis, sickle liver diseases, cell disease and hemosiderosis featured by iron overload, evidences suggest that Iron overload and iron deficiency are suggested by evidences that they affect bone in a negative way, acting

... Show More
View Publication
Publication Date
Tue Mar 31 2020
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Experimental and Theoretical Analysis of a Mono PV Cell with Five Parameters, Simulation Model Compatible with Iraqi Climate
...Show More Authors

The present work included study of the effects of weather conditions such as solar radiation and  ambient temperature on solar panels (monocrystalline 30 Watts) via proposed mathematical model, MATLAB_Simulation was used by scripts file to create a special code to solve the mathematical model , The latter is single –diode model (Five parameter) ,Where the effect of ambient temperature and solar radiation on the output of the solar panel was studied, the Newton Raphson method was used to find the  output current of the solar panel and plot P-V ,I-V curves, the performance of the PV was determined at Standard Test Condition (STC) (1000W/m2)and a comparison between theoretical and experimental results were done .The best efficiency

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Oct 01 2011
Journal Name
Journal Of Engineering
MAGNETO HYDRODYNAMIC NATURAL CONVECTION FLOW ON A VERTICAL CYLINDER WITH A PRESENCE OF HEAT GENERATION AND RADIATION
...Show More Authors

The present work investigates the effect of magneto – hydrodynamic (MHD) laminar natural convection flow on a vertical cylinder in presence of heat generation and radiation. The governing equations which used are Continuity, Momentum and Energy equations. These equations are transformed to dimensionless equations using Vorticity-Stream Function method and the resulting nonlinear system
of partial differential equations are then solved numerically using finite difference approximation. A thermal boundary condition of a constant wall temperature is considered. A computer program (Fortran 90) was built to calculate the rate of heat transfer in terms of local Nusselt number, total mean Nusselt number, velocity distribution as well as te

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Feb 18 2026
Journal Name
Iraqi Journal Of Mechanical And Material Engineering
THE INFLUENCE OF FRICTION FACTOR ON THE COMBINED CONVECTIVE AND RADIATIVE HEAT TRANSFER IN A RECTANGULAR DUCT WITH INTERIOR CIRCULAR CORE
...Show More Authors

View Publication
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
Proposing Robust LAD-Atan Penalty of Regression Model Estimation for High Dimensional Data
...Show More Authors

         The issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the proposed LAD-Atan estimator

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
Proposing Robust LAD-Atan Penalty of Regression Model Estimation for High Dimensional Data
...Show More Authors

         The issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the p

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Jun 10 2024
Journal Name
Iraqi Journal For Computer Science And Mathematics
Solving tri-criteria: total completion time, total late work, and maximum earliness by using exact, and heuristic methods on single machine scheduling problem
...Show More Authors

The presented study investigated the scheduling regarding  jobs on a single machine. Each  job will be processed with no interruptions and becomes available for the processing at time 0. The aim is finding a processing order with regard to jobs, minimizing total completion time , total late work , and maximal tardiness  which is an NP-hard problem. In the theoretical part of the present work, the mathematical formula for the examined problem will be presented, and a sub-problem of the original problem of minimizing the multi-objective functions  is introduced. Also, then the importance regarding the dominance rule (DR) that could be applied to the problem to improve good solutions will be shown. While in the practical part, two

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Advanced Veterinary And Animal Research
Selenium nanoparticles effect on foot and mouth disease vaccine in local Awassi breed male lambs
...Show More Authors

Objective: The goal of this research was to evaluate where selenium nanoparticles impact the activity of antibodies in immunized lambs with foot and mouth vaccines by modulating the immune system. Materials and Methods: Two groups of lambs of 3–4 months of age were injected with 1 ml of ARRIAH-VAC vaccine intramuscularly in the neck, five Lambs were given selenium nanoparticles (size 100 nm) oral administration of selenium nano dose of 0.1 mg/kg of body mass once every day for sixty days considered as group one (G1) while the other five used as control Group 2 (G2). Results: This resulted in the establishment of an immune response, as evidenced by a rise in antibody titer in the blood using the ELISA test for three serotypes A,

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Early Diagnose Alzheimer's Disease by Convolution Neural Network-based Histogram Features Extracting and Canny Edge
...Show More Authors

Alzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (5)
Scopus Crossref
Publication Date
Thu Nov 03 2022
Journal Name
Sensors
A Novel Application of Deep Learning (Convolutional Neural Network) for Traumatic Spinal Cord Injury Classification Using Automatically Learned Features of EMG Signal
...Show More Authors

In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi

... Show More
View Publication
Scopus (11)
Crossref (12)
Scopus Clarivate Crossref