Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid disease predictions. A systematic literature review (SLR) strategy is used in this study to give a comprehensive overview of the existing literature on forecasting data on thyroid disease diagnosed using ML. This study includes 168 articles published between 2013 and 2022, gathered from high-quality journals and applied meta-analysis. The thyroid disease diagnoses (TDD) category, techniques, applications, and solutions were among the many elements considered and researched when reviewing the 41 articles of cited literature used in this research. According to our SLR, the current technique's actual application and efficacy are constrained by several outstanding issues associated with imbalance. In TDD, the technique of ML increases data-driven decision-making. In the Meta-analysis, 168 documents have been processed, and 41 documents on TDD are included for observation analysis. The limits of ML that are discussed in the discussion sections may guide the direction of future research. Regardless, this study predicts that ML-based thyroid disease detection with imbalanced data and other novel approaches may reveal numerous unrealised possibilities in the future
current research aims to build an intellectual framework for concept of organizational forgetting, which is considered one of the most important topics in contemporary management thought, which is gain the consideration of most scholars and researchers in field of organizational behavior, which is to be a loss of intentional or unintentional knowledge of any organizational level. It turned out that just as organizations should learn and acquire knowledge, they must also forget, especially knowledge obsolete and worn out. And represented the research problem in the absence of Arab research dealing with organizational forgetting, and highlights the supporting infrastructure core, and show a close relationship with organizational le
... Show MoreThe aim of this research to study.
The dimensions of organizational learning have been defined(learning dynamics, individuals empowerment, knowledge management and technology application) as well as the dimensions of learning organization have been defined (culture values, knowledge transfer, communication and employee characteristics), Asset completion questionnaire was used to collect data of this research from a purposely sample represent forty employees who works in Iraqi Planning Ministry at different positions. The research divided to four parts :
The first to the research methodology, the second to the theoretical review o
... Show MoreLearning Disabilities are described as a hidden and puzzling disability. Children with these difficulties have the potential to hide weaknesses in their performance because they are a homogenous group of disorders that consist of obvious difficulties in acquiring and using reading, writing, Mathematical inference. Thus, the research aims to identify the disabilities of academic learning in (reading, writing, mathematics), identify the problems of behavior (general, motor, social). Identify the relationship among behaviour problems. The research also aims to identify the counseling needs to reduce the behavioral problems. The researcher adopted the analytical descriptive method by preparing two main tools for measuring learning disabiliti
... Show MoreMachine learning (ML) is a key component within the broader field of artificial intelligence (AI) that employs statistical methods to empower computers with the ability to learn and make decisions autonomously, without the need for explicit programming. It is founded on the concept that computers can acquire knowledge from data, identify patterns, and draw conclusions with minimal human intervention. The main categories of ML include supervised learning, unsupervised learning, semisupervised learning, and reinforcement learning. Supervised learning involves training models using labelled datasets and comprises two primary forms: classification and regression. Regression is used for continuous output, while classification is employed
... Show MoreDiagnosing heart disease has become a very important topic for researchers specializing in artificial intelligence, because intelligence is involved in most diseases, especially after the Corona pandemic, which forced the world to turn to intelligence. Therefore, the basic idea in this research was to shed light on the diagnosis of heart diseases by relying on deep learning of a pre-trained model (Efficient b3) under the premise of using the electrical signals of the electrocardiogram and resample the signal in order to introduce it to the neural network with only trimming processing operations because it is an electrical signal whose parameters cannot be changed. The data set (China Physiological Signal Challenge -cspsc2018) was ad
... Show MoreThe objective of the research is to identify the effect of an instructional design according to the active learning modelsالباحثين in the achievement of the students of the fifth grade, the instructional design was constructed according to the active learning models for the design of education. The research experience was applied for a full academic year (the first & the second term of 2017-2018). The sample consisted of 58 students, 28 students for the experimental group and 30 students for the control group. The experimental design was adopted with partial and post-test, the final achievement test consisted of (50) objectives and essays items on two terms, the validity of the test was verified by the adoption of the Kudoric
... Show MoreCD40 is a type 1 transmembrane protein composed of 277 amino acids, and it belongs to the tumor necrosis factor receptor (TNFR) superfamily. It is expressed in a variety of cell types, including normal B cells, macrophages, dendritic cells, and endothelial cells, as a costimulatory molecule. This study aims to summarize the CD40 polymorphism effect and its susceptibility to immune-related disorders. The CD40 gene polymorphisms showed a significant association with different immune-related disorders and act as a risk factor for increased susceptibility to these diseases.