Preferred Language
Articles
/
bsj-852
Heun Method Using to Solve System of NonLinear Functional Differential Equations
...Show More Authors

In this paper Heun method has been used to find numerical solution for first order nonlinear functional differential equation. Moreover, this method has been modified in order to treat system of nonlinear functional differential equations .two numerical examples are given for conciliated the results of this method.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Arab Journal Of Basic And Applied Sciences
Analytic and numerical solutions for linear and nonlinear multidimensional wave equations
...Show More Authors

View Publication
Crossref (9)
Crossref
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
Oscillations of First Order Neutral Differential Equations with Positive and Negative Coefficients
...Show More Authors

Oscillation criterion is investigated for all solutions of the first-order linear neutral differential equations with positive and negative coefficients. Some sufficient conditions are established so that every solution of eq.(1.1) oscillate. Generalizing of some results in [4] and [5] are given. Examples are given to illustrated our main results.

View Publication Preview PDF
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Bilinear System Identification Using Subspace Method
...Show More Authors

In this paper, a subspace identification method for bilinear systems is used . Wherein a " three-block " and " four-block " subspace algorithms are used. In this algorithms the input signal to the system does not have to be white . Simulation of these algorithms shows that the " four-block " gives fast convergence and the dimensions of the matrices involved are significantly smaller so that the computational complexity is lower as a comparison with " three-block " algorithm .

View Publication Preview PDF
Crossref
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
Convergence Analysis for the Homotopy Perturbation Method for a Linear System of Mixed Volterra-Fredholm Integral Equations
...Show More Authors

           In this paper, the homotopy perturbation method (HPM) is presented for treating a linear system of second-kind mixed Volterra-Fredholm integral equations. The method is based on constructing the series whose summation is the solution of the considered system. Convergence of constructed series is discussed and its proof is given; also, the error estimation is obtained. Algorithm is suggested and applied on several examples and the results are computed by using MATLAB (R2015a). To show the accuracy of the results and the effectiveness of the method, the approximate solutions of some examples are compared with the exact solution by computing the absolute errors.

View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Between Nelson-Olson Method and Two-Stage Limited Dependent Variables (2SLDV ) Method for the Estimation of a Simultaneous Equations System (Tobit Model)
...Show More Authors

This study relates to  the estimation of  a simultaneous equations system for the Tobit model where the dependent variables  ( )  are limited, and this will affect the method to choose the good estimator. So, we will use new estimations methods  different from the classical methods, which if used in such a case, will produce biased and inconsistent estimators which is (Nelson-Olson) method  and  Two- Stage limited dependent variables(2SLDV) method  to get of estimators that hold characteristics the good estimator .

That is , parameters will be estim

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Oct 01 2024
Journal Name
Journal Of Physics: Conference Series
The operational matrices for Elliptic Partial Differential Equations with mixed boundary conditions
...Show More Authors
Abstract<p>The purpose of this research is to implement the orthogonal polynomials associated with operational matrices to get the approximate solutions for solving two-dimensional elliptic partial differential equations (E-PDEs) with mixed boundary conditions. The orthogonal polynomials are based on the Standard polynomial (<italic>x<sup>i</sup> </italic>), Legendre, Chebyshev, Bernoulli, Boubaker, and Genocchi polynomials. This study focuses on constructing quick and precise analytic approximations using a simple, elegant, and potent technique based on an orthogonal polynomial representation of the solution as a double power series. Consequently, a linear </p> ... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
Local and Global Uniqueness Theorems of the N-th Order Partial Differential Equations
...Show More Authors

In this paper, we consider inequalities in which the function is an element of n-th partially order space. Local and Global uniqueness theorem of solutions of the n-the order Partial differential equation Obtained which are applications of Gronwall's inequalities.

View Publication Preview PDF
Crossref
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
Oscillations of First Order Linear Delay Differential Equations with positive and negative coefficients
...Show More Authors

Oscillation criteria are obtained for all solutions of the first-order linear delay differential equations with positive and negative coefficients where we established some sufficient conditions so that every solution of (1.1) oscillate. This paper generalized the results in [11]. Some examples are considered to illustrate our main results.

View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
A general solution of some linear partial differential equations via two integral transforms
...Show More Authors

In this paper, a new analytical method is introduced to find the general solution of linear partial differential equations. In this method, each Laplace transform (LT) and Sumudu transform (ST) is used independently along with canonical coordinates. The strength of this method is that it is easy to implement and does not require initial conditions.

View Publication
Clarivate
Publication Date
Fri Jan 29 2016
Journal Name
Al- Mustansiriyah J. Sci.
The Approximate Solution of Newell Whitehead Segel and Fisher Equations Using The Adomian Decomposition Method
...Show More Authors

In the present work, we use the Adomian Decomposition method to find the approximate solution for some cases of the Newell whitehead segel nonlinear differential equation which was solved previously with exact solution by the Homotopy perturbation and the Iteration methods, then we compared the results.

View Publication Preview PDF