The emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA molecule. A sequence DL model based on a bidirectional gated recurrent unit (GRU) is implemented. The model is applied to the Stanford COVID-19 mRNA vaccine dataset to predict the mRNA sequences deterioration by predicting five reactivity values for every base in the sequence, namely reactivity values, deterioration rates at high pH, at high temperature, at high pH with Magnesium, and at high temperature with Magnesium. The Stanford COVID-19 mRNA vaccine dataset is split into the training set, validation set, and test set. The bidirectional GRU model minimizes the mean column wise root mean squared error (MCRMSE) of deterioration rates at each base of the mRNA sequence molecule with a value of 0.32086 for the test set which outperformed the winning models with a margin of (0.02112). This study would help other researchers better understand how to forecast mRNA sequence molecule properties to develop a stable COVID-19 vaccine.
The proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue
... Show MoreThe research aims to explain the role of the flexible budget in assessing the feedback resulting from deviations by comparing the actual results with the planned performance in light of the economic crisis that the world witnessed during the spread of Corona disease. As most companies, including the Electronic Industries Company, face the problem of controlling production costs and are trying hard to reduce these costs to the lowest level starting from measuring these costs and allocating them and distributing them to products. This helps in controlling deviations and thus the flexible budget becomes a tool that helps in controlling elements Costs
As they are the smallest functional parts of the muscle, motor units (MUs) are considered as the basic building blocks of the neuromuscular system. Monitoring MU recruitment, de-recruitment, and firing rate (by either invasive or surface techniques) leads to the understanding of motor control strategies and of their pathological alterations. EMG signal decomposition is the process of identification and classification of individual motor unit action potentials (MUAPs) in the interference pattern detected with either intramuscular or surface electrodes. Signal processing techniques were used in EMG signal decomposition to understand fundamental and physiological issues. Many techniques have been developed to decompose intramuscularly detec
... Show MoreArticle information: COVID-19 has roused the scientic community, prompting calls for immediate solutions to avoid the infection or at least reduce the virus's spread. Despite the availability of several licensed vaccinations to boost human immunity against the disease, various mutated strains of the virus continue to emerge, posing a danger to the vaccine's ecacy against new mutations. As a result, the importance of the early detection of COVID-19 infection becomes evident. Cough is a prevalent symptom in all COVID-19 mutations. Unfortunately, coughing can be a symptom of various of diseases, including pneumonia and inuenza. Thus, identifying the coughing behavior might help clinicians diagnose the COVID-19 infection earlier and distinguish
... Show MoreThe theme of this Study presents analysis and discuss to the "Share the framework for assessing inflation," a practical study in a sample of joint stock companies listed on the Iraq Stock Exchange for the years (2009-2013). To determine the extent of the disparity between the nominal value of shares (Nominal Value) before deducting inflation and the real value (Real Value) per share, after deducting inflation in the case of zero growth. The study relied on annual reports of the companies of the research sample of the Iraq Stock Exchange, as well as the Iraqi Securities Commission. Besides the annual reports issued by the Ministry of Planning, as well as annual reports and statistical bulletin issued by the Central Bank of Iraq. It is fra
... Show MoreIntrusion detection system is an imperative role in increasing security and decreasing the harm of the computer security system and information system when using of network. It observes different events in a network or system to decide occurring an intrusion or not and it is used to make strategic decision, security purposes and analyzing directions. This paper describes host based intrusion detection system architecture for DDoS attack, which intelligently detects the intrusion periodically and dynamically by evaluating the intruder group respective to the present node with its neighbors. We analyze a dependable dataset named CICIDS 2017 that contains benign and DDoS attack network flows, which meets certifiable criteria and is ope
... Show MoreThe aim of this study was to determine the effect on using the McCarthy Model (4MAT) for developing creative writing skills and reflective thinking among undergraduate students. The quasi-experimental approach was adopted. And, in order to achieve the study objective, the educational content of Teaching Ethics (Approach 401), for the plan for the primary grades teacher preparation program was dealt with by using a teaching program based on the McCarthy Model (4MAT) was used.
The study which was done had been based on the academic achievement test for creative writing skills, and the reflective thinking test. The validity and reliability of the study tools were also confirmed. The study was applied to a sample consisting of
... Show More