Relation on a set is a simple mathematical model to which many real-life data can be connected. A binary relation on a set can always be represented by a digraph. Topology on a set can be generated by binary relations on the set . In this direction, the study will consider different classical categories of topological spaces whose topology is defined by the binary relations adjacency and reachability on the vertex set of a directed graph. This paper analyses some properties of these topologies and studies the properties of closure and interior of the vertex set of subgraphs of a digraph. Further, some applications of topology generated by digraphs in the study of biological systems are cited.
The production companies in the Iraqi industry environment facing many of the problems related to the management of inventory and control In particular in determining the quantities inventory that should be hold it. Because these companies adoption on personal experience and some simple mathematical methods which lead to the identification of inappropriate quantities of inventory.
This research aims to identify the economic quantity of production and purchase for the Pepsi can 330ml and essential components in Baghdad soft drinks Company in an environment dominated by cases of non ensure and High fluctuating as a result of fluctuating demand volumes and costs ass
... Show MoreThe present study investigates the relation between the biliteral and triliteral roots which is the introduction to comprehend the nature of the Semitic roots during its early stage of development being unconfirmed to a single pattern. The present research is not meant to decide on the question of the biliteral roots in the Semitic languages, rather it is meant to confirm the predominance of the triliteral roots on these languages which refers, partially, to analogy adopted by the majority of linguists. This tendency is frequently seen in the languages which incline to over generalize the triliteral phenomenon, i. e., to transfer the biliteral roots to the triliteral room, that is, to subject it to the predominant pattern regarding the r
... Show MoreIn this paper Zener diode was manufactured using ZnO-CuO-ZnO/Si heterojunction structure that used laser induced plasma technique to prepare the nanofilms. Six samples were prepared with a different number of laser pulses, started with 200 to 600 pulses on ZnO tablet with fixed the number of laser pulses on CuO tablet at 300 pulses. The pulse energy of laser deposited was 900mJ using ZnO tablet and 600mJ using CuO tablet. All prepared films shown good behavior as Zener diode when using porous silicon as substrate.
Abstract
The human mind knew the philosophy and logic in the ancient times, and the history afterwards, while the semiotics concept appeared in the modern time, and became a new knowledge field like the other knowledge fields. It deals, in its different concepts and references, with the processes that lead to and reveals the meaning through what is hidden in addition to what is disclosed. It is the result of human activity in its pragmatic and cognitive dimensions together. The semiotic token concept became a knowledge key to access all the study, research, and investigation fields, due to its ability of description, explanation, and dismantling. The paper is divided into two sections preceded by a the
... Show More This research aims to estimate stock returns, according to the Rough Set Theory approach, test its effectiveness and accuracy in predicting stock returns and their potential in the field of financial markets, and rationalize investor decisions. The research sample is totaling (10) companies traded at Iraq Stock Exchange. The results showed a remarkable Rough Set Theory application in data reduction, contributing to the rationalization of investment decisions. The most prominent conclusions are the capability of rough set theory in dealing with financial data and applying it for forecasting stock returns.The research provides those interested in investing stocks in financial
... Show MoreIndexes of topological play a crucial role in mathematical chemistry and network theory, providing valuable insights into the structural properties of graphs. In this study, we investigate the Resize graph of G2(3), a significant algebraic structure arising from the exceptional Lie group (G2) over the finite field F3. We compute several well-known topological indices, including the Zagreb indices, Wiener index, and Randić index, to analyze the graph's connectivity and complexity. Our results reveal intricate relationships between the algebraic structure of G2(3) and its graphical properties, offering a deeper understanding of its combinatorial and spectral characteristics. These findings contribute to the broader study of algebraic graph t
... Show MoreThis research include building mathematical models for aggregating planning and shorting planning by using integer programming technique for planning master production scheduling in order to control on the operating production for manufacturing companies to achieve their objectives of increasing the efficiency of utilizing resources and reduce storage and improving customers service through deliver in the actual dates and reducing delays.