The Hartley transform generalizes to the fractional Hartley transform (FRHT) which gives various uses in different fields of image encryption. Unfortunately, the available literature of fractional Hartley transform is unable to provide its inversion theorem. So accordingly original function cannot retrieve directly, which restrict its applications. The intension of this paper is to propose inversion theorem of fractional Hartley transform to overcome this drawback. Moreover, some properties of fractional Hartley transform are discussed in this paper.
This paper is devoted to an inverse problem of determining discontinuous space-wise dependent heat source in a linear parabolic equation from the measurements at the final moment. In the existing literature, a considerably accurate solution to the inverse problems with an unknown space-wise dependent heat source is impossible without introducing any type of regularization method but here we have to determine the unknown discontinuous space-wise dependent heat source accurately using the Haar wavelet collocation method (HWCM) without applying the regularization technique. This HWCM is based on finite-difference and Haar wavelets approximation to the inverse problem. In contrast to othe
The parameter and system reliability in stress-strength model are estimated in this paper when the system contains several parallel components that have strengths subjects to common stress in case when the stress and strengths follow Generalized Inverse Rayleigh distribution by using different Bayesian estimation methods. Monte Carlo simulation introduced to compare among the proposal methods based on the Mean squared Error criteria.
In this paper, the class of meromorphic multivalent functions of the form by using fractional differ-integral operators is introduced. We get Coefficients estimates, radii of convexity and star likeness. Also closure theorems and distortion theorem for the class , is calculaed.
Some nonlinear differential equations with fractional order are evaluated using a novel approach, the Sumudu and Adomian Decomposition Technique (STADM). To get the results of the given model, the Sumudu transformation and iterative technique are employed. The suggested method has an advantage over alternative strategies in that it does not require additional resources or calculations. This approach works well, is easy to use, and yields good results. Besides, the solution graphs are plotted using MATLAB software. Also, the true solution of the fractional Newell-Whitehead equation is shown together with the approximate solutions of STADM. The results showed our approach is a great, reliable, and easy method to deal with specific problems in
... Show MoreIn the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably
This paper aims to find new analytical closed-forms to the solutions of the nonhomogeneous functional differential equations of the nth order with finite and constants delays and various initial delay conditions in terms of elementary functions using Laplace transform method. As well as, the definition of dynamical systems for ordinary differential equations is used to introduce the definition of dynamical systems for delay differential equations which contain multiple delays with a discussion of their dynamical properties: The exponential stability and strong stability
The study deals with the issue of multi-choice linear mathematical programming. The right side of the constraints will be multi-choice. However, the issue of multi-purpose mathematical programming can not be solved directly through linear or nonlinear techniques. The idea is to transform this matter into a normal linear problem and solve it In this research, a simple technique is introduced that enables us to deal with this issue as regular linear programming. The idea is to introduce a number of binary variables And its use to create a linear combination gives one parameter was used multiple. As well as the options of linear programming model to maximize profits to the General Company for Plastic Industries product irrigation sy
... Show MoreThe current research creates an overall relative analysis concerning the estimation of Meixner process parameters via the wavelet packet transform. Of noteworthy presentation relevance, it compares the moment method and the wavelet packet estimator for the four parameters of the Meixner process. In this paper, the research focuses on finding the best threshold value using the square root log and modified square root log methods with the wavelet packets in the presence of noise to enhance the efficiency and effectiveness of the denoising process for the financial asset market signal. In this regard, a simulation study compares the performance of moment estimation and wavelet packets for different sample sizes. The results show that wavelet p
... Show MoreIn this research , we study the inverse Gompertz distribution (IG) and estimate the survival function of the distribution , and the survival function was evaluated using three methods (the Maximum likelihood, least squares, and percentiles estimators) and choosing the best method estimation ,as it was found that the best method for estimating the survival function is the squares-least method because it has the lowest IMSE and for all sample sizes