Preferred Language
Articles
/
bsj-8394
Traveling Wave Solutions of Fractional Differential Equations Arising in Warm Plasma
...Show More Authors

This paper aims to study the fractional differential systems arising in warm plasma, which exhibits traveling wave-type solutions. Time-fractional Korteweg-De Vries (KdV) and time-fractional Kawahara equations are used to analyze cold collision-free plasma, which exhibits magnet-acoustic waves and shock wave formation respectively. The decomposition method is used to solve the proposed equations. Also, the convergence and uniqueness of the obtained solution are discussed. To illuminate the effectiveness of the presented method, the solutions of these equations are obtained and compared with the exact solution. Furthermore, solutions are obtained for different values of time-fractional order and represented graphically.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
New Spectral Range Generations from Laser-plasma Interaction
...Show More Authors

            High-intensity laser-produced plasma has been extensively investigated in many studies. In this demonstration, a new spectral range was observed in the resulted spectra from the laser-plasma interaction, which opens up new discussions for new light source generation. Moreover, the characterizations of plasma have been improved through the interaction process of laser-plasma. Three types of laser were incorporated in the measurements, continuous-wave CW He-Ne laser, CW diode green laser, pulse Nd: YAG laser. As the plasma system, DC glow discharge plasma under the vacuum chamber was considered in this research. The plasma spectral peaks were evaluated, where they refer to Nitrogen gas. The results indicated that the

... Show More
View Publication Preview PDF
Scopus (12)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of The College Of Basic Education
Efficient Modifications of the Adomian Decomposition Method for Thirteenth Order Ordinary Differential Equations
...Show More Authors

This paper deals with the thirteenth order differential equations linear and nonlinear in boundary value problems by using the Modified Adomian Decomposition Method (MADM), the analytical results of the equations have been obtained in terms of convergent series with easily computable components. Two numerical examples results show that this method is a promising and powerful tool for solving this problems.

View Publication
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
An Analytic Solution for Riccati Matrix Delay Differential Equation using Coupled Homotopy-Adomian Approach
...Show More Authors

An efficient modification and a novel technique combining the homotopy concept with  Adomian decomposition method (ADM) to obtain an accurate analytical solution for Riccati matrix delay differential equation (RMDDE) is introduced  in this paper  . Both methods are very efficient and effective. The whole integral part of ADM is used instead of the integral part of homotopy technique. The major feature in current technique gives us a large convergence region of iterative approximate solutions .The results acquired by this technique give better approximations for a larger region as well as previously. Finally, the results conducted via suggesting an efficient and easy technique, and may be addressed to other non-linear problems.

View Publication Preview PDF
Scopus (5)
Scopus Clarivate Crossref
Publication Date
Wed Sep 11 2019
Journal Name
Aip Conference Proceedings
Estimation of shock wave position in plasma plume using Sedov-Taylor model
...Show More Authors

In this work, radius of shock wave of plasma plume (R) and speed of plasma (U) have been calculated theoretically using Matlab program.

Publication Date
Sun Aug 09 2015
Journal Name
No
Stability and Instability of Some Types of Delay Differential Equations
...Show More Authors

Publication Date
Thu Nov 17 2022
Journal Name
Journal Of Interdisciplinary Mathematics
Study on approximate analytical methods for nonlinear differential equations
...Show More Authors

In this work, an analytical approximation solution is presented, as well as a comparison of the Variational Iteration Adomian Decomposition Method (VIADM) and the Modified Sumudu Transform Adomian Decomposition Method (M STADM), both of which are capable of solving nonlinear partial differential equations (NPDEs) such as nonhomogeneous Kertewege-de Vries (kdv) problems and the nonlinear Klein-Gordon. The results demonstrate the solution’s dependability and excellent accuracy.

Scopus (11)
Scopus
Publication Date
Sat Jan 01 2022
Journal Name
1st Samarra International Conference For Pure And Applied Sciences (sicps2021): Sicps2021
Solving the created ordinary differential equations from Lomax distribution
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
On Blow-up Solutions of A Parabolic System Coupled in Both Equations and Boundary Conditions
...Show More Authors

This paper is concerned with the blow-up solutions of a system of two reaction-diffusion equations coupled in both equations and boundary conditions. In order to understand how the reaction terms and the boundary terms affect the blow-up properties, the lower and upper blow-up rate estimates are derived. Moreover, the blow-up set under some restricted assumptions is studied.

View Publication Preview PDF
Scopus (11)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Jul 04 2021
Journal Name
(al-qadisiyah-journal Of Pure Science(qjps
Reliable Iterative Method for solving Volterra - Fredholm Integro Differential Equations
...Show More Authors

The aim of this paper is to propose a reliable iterative method for resolving many types of Volterra - Fredholm Integro - Differential Equations of the second kind with initial conditions. The series solutions of the problems under consideration are obtained by means of the iterative method. Four various problems are resolved with high accuracy to make evident the enforcement of the iterative method on such type of integro differential equations. Results were compared with the exact solution which exhibits that this technique was compatible with the right solutions, simple, effective and easy for solving such problems. To evaluate the results in an iterative process the MATLAB is used as a math program for the calculations.

View Publication
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of classical method and optimization methods for estimating parameters in nonlinear ordinary differential equation
...Show More Authors

 ABSTRICT:

  This study is concerned with the estimation of constant  and time-varying parameters in non-linear ordinary differential equations, which do not have analytical solutions. The estimation is done in a multi-stage method where constant and time-varying parameters are estimated in a straight sequential way from several stages. In the first stage, the model of the differential equations is converted to a regression model that includes the state variables with their derivatives and then the estimation of the state variables and their derivatives in a penalized splines method and compensating the estimations in the regression model. In the second stage, the pseudo- least squares method was used to es

... Show More
View Publication Preview PDF
Crossref