Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a CT lung cancer dataset consisting of 1000 images and four different classes. The data augmentation process is applied to prevent overfitting, increase the size of the data, and enhance the training process. Score-level fusion and ensemble learning are also used to get the best performance and solve the low accuracy problem. All models were evaluated using accuracy, precision, recall, and the F1-score. Results: Experiments show the high performance of the ensemble model with 99.44% accuracy, which is better than all of the current state-of-the art methodologies. Conclusion: The current study's findings demonstrate the high accuracy and robustness of the proposed ensemble transfer deep learning using various transfer learning models
Green synthesis is depending on preparation of nano composited SiO2/V2O5 by using the modified sol-gel method depending on rice husk ash as a source for the extraction of silica gel and the product powder of nano composited SiO2/V2O5 characterization by many techniques such as X-ray diffraction spectroscopy (XRD), field emission scanning electron microscopy (FESEM), and N2 adsorptions/desorption isotherms (BET). This study also includs the biological effectiveness of SiO2/V2O5 and its effect on inhibiting bacterial growth after the prepared nanomaterial was applied to wound dressings, which gave a promising result for its use as
... Show MoreThe research aimed at designing teaching sessions using the self-scheduling strategy with a competitive style in learning handball as well as identifying differences between pre and post tests in both groups in learning short and long passes in handball. The researchers used the experimental method on 2nd-grade secondary school students. The researchers concluded using the self-scheduling strategy due to its positive effect on learning short and long handball passes in handball. Finally, the researchers recommended applying strategies and styles in teaching different school levels as well as making similar studies using teaching strategies and styles for learning handball skills in students.
The present study aimed at ((building an educational -learning design based on the theory of Merrill in (CDT) and measuring the effectiveness of this design in the motivation and achievement of the high school fifth grade students to art education in the subject of the history of modern art)). The research community is made of fifth grade preparatory students in the secondary school of Umm Ayman in the Directorate of Education of Baghdad / Ar-Rusafa in a simple random way. The study sample (58 students) was chosen from section (e) to study according to Merrill theory (CDT) and section (d) to study according to the traditional way.
The pilot design of the control and experimental equivalent groups that have partial control in t
The current research discusses "The Relationship critical factors for knowledge transfer in strategic success opportunities", the attention have been increased on knowledge transfer and strategic success subjects because on being one of the important and contemporary issues, which have a significant impact on the existence of organizations and its future. The research aims to identify the critical factors for knowledge transfer in private high education environment which enables (the college community surveyed) to achieve strategic success, also the research sought to answer questions related to research problem by testing a number of major and minor hypothes in correlation, in order to test the hypotheses I us
... Show MoreBP algorithm is the most widely used supervised training algorithms for multi-layered feedforward neural net works. However, BP takes long time to converge and quite sensitive to the initial weights of a network. In this paper, a modified cuckoo search algorithm is used to get the optimal set of initial weights that will be used by BP algorithm. And changing the value of BP learning rate to improve the error convergence. The performance of the proposed hybrid algorithm is compared with the stan dard BP using simple data sets. The simulation result show that the proposed algorithm has improved the BP training in terms of quick convergence of the solution depending on the slope of the error graph.
Some new norms need to be adapted due to COVID-19 pandemic period where people need to wear masks, wash their hands frequently, maintain social distancing, and avoid going out unless necessary. Therefore, educational institutions were closed to minimize the spread of COVID-19. As a result of this, online education was adapted to substitute face-to-face learning. Therefore, this study aimed to assess the Malaysian university students’ adaptation to the new norms, knowledge and practices toward COVID-19, besides, their attitudes toward online learning. A convenient sampling technique was used to recruit 500 Malaysian university students from January to February 2021 through social media. For data collection, all students
... Show More