Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a CT lung cancer dataset consisting of 1000 images and four different classes. The data augmentation process is applied to prevent overfitting, increase the size of the data, and enhance the training process. Score-level fusion and ensemble learning are also used to get the best performance and solve the low accuracy problem. All models were evaluated using accuracy, precision, recall, and the F1-score. Results: Experiments show the high performance of the ensemble model with 99.44% accuracy, which is better than all of the current state-of-the art methodologies. Conclusion: The current study's findings demonstrate the high accuracy and robustness of the proposed ensemble transfer deep learning using various transfer learning models
Time-domain spectral matching commonly used to define seismic inputs to dynamic analysis in terms of acceleration time history compatible with a specific target response spectrum is used in this study to investigate the second-order geometric effect of P-delta on the seismic response of base-isolated high-rise buildings. A synthetic time series is generated by adjusting reference time series that consist of available readings from a past earthquake of the 1940 El Centro earthquake adopted as an initial time series. The superstructure of a 20-story base isolated building is represented by a 3-D finite element model using ETABS software. The results of the base isolated building show that base isolation technique significantly reduces inter-s
... Show MoreAsthma is a chronic respiratory disease highly prevalent worldwide. Recent studies have suggested a role for microbiome-associated gut–lung axis in asthma development. In the current study, we investigated if Resveratrol (RES), a plant-based polyphenol, can attenuate ovalbumin (OVA)-induced murine allergic asthma, and if so, the role of microbiome in the gut–lung axis in this process. We found that RES attenuated allergic asthma with significant improvements in pulmonary functions in OVA-exposed mice when tested using plethysmography for frequency (F), mean volume (MV), specific airway resistance (sRaw), and delay time(dT). RES treatment also suppressed inflammatory cytokines in the lungs. RES modulated lung microbiota and cause
... Show MoreThis paper presents a computer simulation model of a thermally activated roof (TAR) to cool a room using cool water from a wet cooling tower. Modeling was achieved using a simplified 1-D resistance-capacitance thermal network (RC model) for an infinite slab. Heat transfer from the cooling pipe network was treated as 2-D heat flow. Only a limited number of nodes were required to obtain reliable results. The use of 6th order RC-thermal model produced a set of ordinary differential equations that were solved using MATLAB - R2012a. The computer program was written to cover all possible initial conditions, material properties, TAR system geometry and hourly solar radiation. The cool water supply was considered time
... Show MoreThe study aims to identify the effects of dubbed Turkish drama on the public through the application of a sample of the views of women. The study also attempts to monitor the causes and motives due to the act of observation and to identify the various effects of this act. In order to achieve these goals, the researcher relies on the descriptive approach in addition to the questionnaire and interviews to collect data. It ends with a number of results such as: The study aims to identify the effects of dubbed Turkish drama on the public through the application of a sample of the views of women. The study also attempts to monitor the causes and motives due to the act of observation and to identify the various effects of this act. In ord
... Show MoreThis study is marked by: The ignorant poem and body language
Its main objective is to reveal the manifestations of this language in the text mentioned, and accordingly, the sieve poem has been read semantic (semantic) and hermeneutic, revealing the poet's ability to employ symbols and signals (body language) in the poem chosen for this purpose; The existence of such language in pre-Islamic poetry. After a long reflection and reading, the signs and symbols of the physical movement of the body, and its feminine and aesthetic manifestations were identified, and this was achieved through the use of modern critical methodologies that directly affect this language. The study consisted of an introduction and three topics, followed by t
Abstract: The utility of DNA sequencing in diagnosing and prognosis of diseases is vital for assessing the risk of genetic disorders, particularly for asymptomatic individuals with a genetic predisposition. Such diagnostic approaches are integral in guiding health and lifestyle decisions and preparing families with the necessary foreknowledge to anticipate potential genetic abnormalities. The present study explores implementing a define-by-run deep learning (DL) model optimized using the Tree-structured Parzen estimator algorithm to enhance the precision of genetic diagnostic tools. Unlike conventional models, the define-by-run model bolsters accuracy through dynamic adaptation to data during the learning process and iterative optimization
... Show MoreThe most common cause of upper respiratory tract infection is coronavirus, which has a crown appearance due to the existence of spikes on its envelope. D-dimer levels in the plasma have been considered a prognostic factor for COVID-19 patients.
The aim of the study is to demonstrate the role of COVID-19 on coagulation parameters D-dimer and ferritin with their association with COVID-19 severity and disease progression in a single-center study.
In the literature, several correlations have been proposed for bubble size prediction in bubble columns. However these correlations fail to predict bubble diameter over a wide range of conditions. Based on a data bank of around 230 measurements collected from the open literature, a correlation for bubble sizes in the homogenous region in bubble columns was derived using Artificial Neural Network (ANN) modeling. The bubble diameter was found to be a function of six parameters: gas velocity, column diameter, diameter of orifice, liquid density, liquid viscosity and liquid surface tension. Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 7.3 % and correlation coefficient of 92.2%. A
... Show More