Nine new compounds of 2-amino-5-chlorobenzothiazole derivatives were synthesized. These new compounds were formed through the reaction of 2-amino-5-chlorobenzothiazole 1 with ethyl chloroacetate and KOH, which gave an ester derivative 2, followed by refluxing compound 2 with hydrazine hydrate to afford hydrazide derivative 3. The reaction of compound 3 with CS2 and KOH gave 1,3,4-oxadiazole-2-thiol derivative 4, and then the reaction of compound 2 with thiosemicarbazide to produce compound 5 then treated it with 4%NaOH led to ring closure to provide 1,2,4-triazole-3-thiol derivative 6. The reaction of 2-amino-5-chlorobenzothiazole1 with chloroacetic acid gave 7 followed by refluxing the latter compound with ortho amino aniline giving benzimidazole derivative 8. Azomethine 9 was synthesized over 2-amino-6-chloro-benzothiazole with bromobenzaldehyde, the last compound 9 was converted to a thiazolidinone derivative 10 through the reaction of compound 9 with 2-mercaptoaceticacid. The prepared derivatives were established by using FT-IR, 1H-NMR spectroscopy, elemental analysis C.H.N. and physical properties. Entirely compounds were examined for their anti-fungal action against Candida glabrata and Aspergillus niger, and the results revealed that some compounds showed a good measurable activity comparing with fluconazole as stander drug.
New heterocyclic compounds derived from 2-Morpholino-1,8-naphthyridine-4-carboxylic acid such as oxadiazolo, thiadiazolo – thione and triazolo-thione have been prepared and characterized on the basis of IR and 1H NMR spectra data. The hydrizide compound was utilized as a starting material for preparing of these compounds. The second part of this study involves the biological studies of some of these naphthyridine derivatives by using three different kinds of bacteria namely: Staphylococcus aureus, Pseudomonas aeruglnosa and Escherichia coli. The data indicated that some of these compounds have a good activity against the tested bacteria in comparison to antibiotics.
Previous studies on the synthesis and characterization of metal chelates with uracil by elemental analysis, conductivity, IR, UV-Vis, NMR spectroscopy, and thermal analysis were covered in this review article. Reviewing these studies, we found that uracil can be coordinated through the electron pair on the N1, N3, O2, or O4 atoms. If the uracil was a mono-dentate ligand, it will be coordinated by one of the following atoms: N1, N3 or O2. But if the uracil was bi-dentate ligand, it will be coordinated by atoms N1 and O2, N3 and O2 or N3 and O4. However, when uracil forms complexes in the form of polymers, coordination occurs through the following atoms: N1 and N3 or N1 and O4.
In the present study, a novel ligand (L) made of 2-hydroxynaphthaldehyde and 3-hydrazone-1,3-dihydro-indole-2-one(3-[(3-hydroxynaphthalen-2-yl-ethylidene)-hydrazono]-1,3-dihydro-indol-2-one). The ligand was characterized by FTIR, UV-vis, mass, 1H-NMR, 13C-NMR, and CHN elemental analysis. New complexes of this ligand were created by treating methanol and a drop of DMF solution of the produced ligand with the hydrated metal salts of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) in a molar ratio of 2:1 (L:M). As a result, complexes have been emerged and identified FTIR, UV-vis, C.H.N., chloride-containing, molar conductance, magnetic susceptibility, and atomic absorption. The characterization result for each complex indicated complexes wi
... Show MoreThis experiment presented essential oils by GC/MS, pigment content, and their antioxidant activities as well as sensory evaluation of delight samples. Limonene (66.88%) was the most prevalent yield. The peels of clementine had DPPH and ABT Scavenging activity. All levels of pigment extract had better scores for all sensory values and recorded acceptable scores in terms of appearance, color, aroma, and overall acceptability compared to control delight. Besides, delight samples containing 15 mg astaxanthin pigment extract showed maximum sensory scores compared to other samples and control delight. On the other hand, the product was less acceptable to the panelists compared to control in the case of the addition of 3.75 mg astaxanthin pigme
... Show MoreIn this research, CNRs have been synthesized using pyrolysis of plastic waste(pp) at 1000 ° C for one hour in a closed reactor made from stainless steel, using magnesium oxide (MgO) as a catalyst. The resultant carbon nano rods were purified and characterized using energy dispersive X-ray spectroscopy (EDX), X-ray powder diffraction (XRD). The surface characteristics of carbon rods were observed with the Field emission scanning electron microscopy (FESEM). The carbon was evenly spread and had the highest concentration from SEM-EDX characterization. The results of XRD and FESEM have shown that carbon Nano rods (CNRs) were present in Nano figures, synthesized at 1000 ° C and with pyrolysis temperature 400° C. One of t
... Show MoreComplexes of 1-phenyl-3-(2(-5-(phenyl amino)-1,3,4-thiadiazole-2-yl)phenyl) thiourea have been prepared and characteizedby elemental analysis, Ff-[R, and u.v./ visible spectra moreover,determination of metal content M%o by flame atomic absorptionspectroscopy, molar conductance in DMSO solution and magneticmoments (peffl.The result showed that the ligand (L) was coordinated to Mn+2, Ni+2,Ct+2,2n+2,Cd+2, and Hg+2 ions through the nitrogen atoms and sulpheratoms.From the result obtained, rhe following general formula [MLCl2] hasbeen given for the prepared complexes with an octahedral geometryaround the metal ions for all complexes.where M= Mn+2, Ni+2, cu+2, zn+2, cd+2, and Hg+2 l= l-phenyl-3-(2-(5-(phenyl amino
... Show Moreفي تعزيز بيئة الانتاج الرشيق استخدام اسلوب S -5
The research includes the synthesis and identification of the mixed ligands complexes of M(II) Ions in general composition [M(Lyn)2(phen)] Where L- lysine (C6H14N2O2) commonly abbreviated (LynH) as a primary ligand and 1,10-phenanthroline(C12H8N2) commonly abbreviated as "phen," as a secondary ligand . The ligands and the metal chlorides were brought in to reaction at room temperature in ethanol as solvent. The reaction required the following molar ratio [(1:1:2) (metal): phen:2 Lyn -] with M(II) ions, were M = Mn(II),Cu(II), Ni(II), Co(II), Fe(II) and Cd(II). Our research also includes studying the bio–activity of the some complexes prepared against pathogenic bacteria Escherichia coli(-),Staphylococcus(-) , Pseudomonas (-), Bacillus (-)
... Show More