Preferred Language
Articles
/
bsj-829
Oscillation of Nonlinear First Order Neutral Differential Equations
...Show More Authors

In this paper, the author established some new integral conditions for the oscillation of all solutions of nonlinear first order neutral delay differential equations. Examples are inserted to illustrate the results.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jun 23 2023
Journal Name
Journal The College Of Basic Education / Al-mustansiriyah University
Numerical Solution of Non-linear Delay Differential Equations Using Semi Analytic Iterative Method
...Show More Authors

We present a reliable algorithm for solving, homogeneous or inhomogeneous, nonlinear ordinary delay differential equations with initial conditions. The form of the solution is calculated as a series with easily computable components. Four examples are considered for the numerical illustrations of this method. The results reveal that the semi analytic iterative method (SAIM) is very effective, simple and very close to the exact solution demonstrate reliability and efficiency of this method for such problems.

View Publication
Crossref (1)
Crossref
Publication Date
Thu Mar 06 2025
Journal Name
Aip Conference Proceedings
Solving 5th order nonlinear 4D-PDEs using efficient design of neural network
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
Matrix Form of Deriving High Order Schemes for the First Derivative
...Show More Authors

For many problems in Physics and Computational Fluid Dynamics (CFD), providing an accurate approximation of derivatives is a challenging task. This paper presents a class of high order numerical schemes for approximating the first derivative. These approximations are derived based on solving a special system of equations with some unknown coefficients. The construction method provides numerous types of schemes with different orders of accuracy. The accuracy of each scheme is analyzed by using Fourier analysis, which illustrates the dispersion and dissipation of the scheme. The polynomial technique is used to verify the order of accuracy of the proposed schemes by obtaining the error terms. Dispersion and dissipation errors are calculated

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Mon Feb 05 2052
Journal Name
Partial Differential Equations In Applied Mathematics
A hybrid analytical method for fractional order Klein–Gordon and Burgers equations
...Show More Authors

Scopus
Publication Date
Sat Nov 30 2024
Journal Name
Iraqi Journal Of Science
Admissible Classes of Seven-Parameter Mittag-Leffler Operatorwith Third-Order Differential Subordination Properties
...Show More Authors

The main purpose of this paper, is to characterize new admissible classes of linear operator in terms of seven-parameter Mittag-Leffler function, and discuss sufficient conditions in order to achieve certain third-order differential subordination and superordination results. In addition, some linked sandwich theorems involving these classes had been obtained.  

View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Sep 01 2022
Journal Name
Iaes International Journal Of Robotics And Automation
Implementation of a complex fractional order proportional-integral-derivative controller for a first order plus dead time system
...Show More Authors

This paper presents the implementation of a complex fractional order proportional integral derivative (CPID) and a real fractional order PID (RPID) controllers. The analysis and design of both controllers were carried out in a previous work done by the author, where the design specifications were classified into easy (case 1) and hard (case 2) design specifications. The main contribution of this paper is combining CRONE approximation and linear phase CRONE approximation to implement the CPID controller. The designed controllers-RPID and CPID-are implemented to control flowing water with low pressure circuit, which is a first order plus dead time system. Simulation results demonstrate that while the implemented RPID controller fails to stabi

... Show More
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Computational Science
Novel approximate solution for fractional differential equations by the optimal variational iteration method
...Show More Authors

Crossref (31)
Clarivate Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Computational Science
Novel approximate solution for fractional differential equations by the optimal variational iteration method
...Show More Authors

View Publication
Crossref (36)
Crossref
Publication Date
Mon Nov 01 2021
Journal Name
Proceedings Of First International Conference On Mathematical Modeling And Computational Science: Icmmcs 2020
Study the Stability for Ordinary Differential Equations Using New Techniques via Numerical Methods
...Show More Authors

Nonlinear differential equation stability is a very important feature of applied mathematics, as it has a wide variety of applications in both practical and physical life problems. The major object of the manuscript is to discuss and apply several techniques using modify the Krasovskii's method and the modify variable gradient method which are used to check the stability for some kinds of linear or nonlinear differential equations. Lyapunov function is constructed using the variable gradient method and Krasovskii’s method to estimate the stability of nonlinear systems. If the function of Lyapunov is positive, it implies that the nonlinear system is asymptotically stable. For the nonlinear systems, stability is still difficult even though

... Show More
Scopus (8)
Scopus
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
Approximate Solution of Delay Differential Equations Using the Collocation Method Based on Bernstien Polynomials???? ???????? ????????? ????????? ????????? ???????? ?????????? ???????? ??? ??????? ???? ?????????
...Show More Authors

In this paper a modified approach have been used to find the approximate solution of ordinary delay differential equations with constant delay using the collocation method based on Bernstien polynomials.

View Publication Preview PDF
Crossref (1)
Crossref