Preferred Language
Articles
/
bsj-8177
Indoor/Outdoor Deep Learning Based Image Classification for Object Recognition Applications
...Show More Authors

With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor sets, resulting in four trained models. The test sets are used to evaluate the trained models using many evaluation metrics (accuracy, TPR, FNR, PPR, FDR). Results of Google Net model indicate the high performance of the designed models with 99.34% and 99.76% accuracies for indoor and outdoor datasets, respectively. For Mobile Net models, the result accuracies are 99.27% and 99.68% for indoor and outdoor sets, respectively. The proposed methodology is compared with similar ones in the field of object recognition and image classification, and the comparative study proves the transcendence of the propsed system.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Qin Seal Script Character Recognition with Fuzzy and Incomplete Information
...Show More Authors

The dependable and efficient identification of Qin seal script characters is pivotal in the discovery, preservation, and inheritance of the distinctive cultural values embodied by these artifacts. This paper uses image histograms of oriented gradients (HOG) features and an SVM model to discuss a character recognition model for identifying partial and blurred Qin seal script characters. The model achieves accurate recognition on a small, imbalanced dataset. Firstly, a dataset of Qin seal script image samples is established, and Gaussian filtering is employed to remove image noise. Subsequently, the gamma transformation algorithm adjusts the image brightness and enhances the contrast between font structures and image backgrounds. After a s

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Sun Feb 17 2019
Journal Name
Iraqi Journal Of Physics
Classification of the galaxy Milky Way using variable precision rough sets technique
...Show More Authors

Astronomy image is regarded main source of information to discover outer space, therefore to know the basic contain for galaxy (Milky way), it was classified using Variable Precision Rough Sets technique to determine the different region within galaxy according different color in the image. From classified image we can determined the percentage for each class and then what is the percentage mean. In this technique a good classified image result and faster time required to done the classification process.

View Publication Preview PDF
Crossref
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of Engineering
A Visual Interface Design for Evaluating the Quality of Google Map Data for some Engineering Applications
...Show More Authors

Today, there are large amounts of geospatial data available on the web such as Google Map (GM), OpenStreetMap (OSM), Flickr service, Wikimapia and others. All of these services called open source geospatial data. Geospatial data from different sources often has variable accuracy due to different data collection methods; therefore data accuracy may not meet the user requirement in varying organization. This paper aims to develop a tool to assess the quality of GM data by comparing it with formal data such as spatial data from Mayoralty of Baghdad (MB). This tool developed by Visual Basic language, and validated on two different study areas in Baghdad / Iraq (Al-Karada and Al- Kadhumiyah). The positional accuracy was asses

... Show More
View Publication
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
A Digital-Based Optimal AVR Design of Synchronous Generator Exciter Using LQR Technique
...Show More Authors

In this paper a new structure for the AVR of the power system exciter is proposed and designed using digital-based LQR. With two weighting matrices R and Q,  this method produces an optimal regulator that is used to generate the feedback control law. These matrices are called state and control weighting matrices and are used to balance between the relative importance of the input and the states in the cost function that is being optimized. A sample power system composed of single machine connected to an infinite- bus bar (SMIB) with both a conventional and a proposed Digital AVR (DAVR) is simulated. Evaluation results show that the DAVR damps well the oscillations of the terminal voltage and presents a faster respo

... Show More
View Publication Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
Photonic Crystal Fiber Pollution Sensor Based on the Surface Plasmon Resonance Technology
...Show More Authors

Photonic Crystal Fiber (PCF) based on the Surface Plasmon Resonance (SPR) effect has been proposed to detect polluted water samples. The sensing characteristics are illustrated using the finite element method. The right hole of the right side of PCF core has been coated with chemically stable gold material to achieve the practical sensing approach. The performance parameter of the proposed sensor is investigated in terms of wavelength sensitivity, amplitude sensitivity, sensor resolution, and linearity of the resonant wavelength with the variation of refractive index of analyte. In the sensing range of 1.33 to 1.3624, maximum sensitivities of 1360.2 nm ∕ RIU and 184 RIU−1 are achieved with the high sensor resolutions of 7

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (12)
Scopus Crossref
Publication Date
Thu Apr 13 2023
Journal Name
International Journal Of Research In Social Sciences And Humanities
Subject Review: The Effectiveness Of Integrating E-Learning On Learning Outcome And Student Perceptions In Tertiary Education
...Show More Authors

The literature shows conflicting outcomes, making it difficult to determine how e-learning affects the performance of students in higher education. The effect of e-learning was studied and data has been gathered with the utilization of a variety of qualitative and quantitative methods, especially in relation to students' academic achievements and perceptions in higher education, according to literature review that has been drawn from articles published in the past two decades (2000-2020). The development of a sense of community in the on-line environment has been identified to be one of the main difficulties in e-learning education across this whole review. In order to create an efficient online learning community, it could be claim

... Show More
View Publication
Crossref
Publication Date
Sat Feb 09 2019
Journal Name
Journal Of The College Of Education For Women
The Effect of Combining Video Lectures and Kolb Experiential Learning on EFL Student-Teachers’ Ability to Teach Communicative Coursebook and their Teaching Competencies
...Show More Authors

Communicative-based textbooks are developed and disseminated throughout the country.
However, it is difficult for teachers who themselves have learnt English through the traditional
approaches to suddenly be familiar with CLT (Communicative Language Teaching) principles
and teach communicatively. Therefore, many teachers remain somewhat confused about what
exactly CLT is and others familiar with CLT but unable to achieve communicative classroom
teaching. Consequently, those teachers need to be introduced to the CLT principles and they need
training in how to put CLT principles into practice. Accordingly, this study aims to find out the
effect of combining video lectures and Kolb experiential learning on EFL student-t

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 01 2015
Journal Name
. International Journal Of Computer Science And Mobile Computing
A Hybrid Lossy Image Compression based on Wavelet Transform, Polynomial Approximation Model, Bit Plane Slicing and Absolute Moment Block Truncation
...Show More Authors

Publication Date
Thu May 23 2019
Journal Name
The International Journal Of Artificial Organs
Real-time classification of shoulder girdle motions for multifunctional prosthetic hand control: A preliminary study
...Show More Authors

In every country in the world, there are a number of amputees who have been exposed to some accidents that led to the loss of their upper limbs. The aim of this study is to suggest a system for real-time classification of five classes of shoulder girdle motions for high-level upper limb amputees using a pattern recognition system. In the suggested system, the wavelet transform was utilized for feature extraction, and the extreme learning machine was used as a classifier. The system was tested on four intact-limbed subjects and one amputee, with eight channels involving five electromyography channels and three-axis accelerometer sensor. The study shows that the suggested pattern recognition system has the ability to classify the sho

... Show More
View Publication
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Fri Mar 29 2024
Journal Name
Iraqi Journal Of Science
Evaluating the Performance and Behavior of CNN, LSTM, and GRU for Classification and Prediction Tasks
...Show More Authors

     Deep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod

... Show More
View Publication
Scopus (10)
Crossref (4)
Scopus Crossref