With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor sets, resulting in four trained models. The test sets are used to evaluate the trained models using many evaluation metrics (accuracy, TPR, FNR, PPR, FDR). Results of Google Net model indicate the high performance of the designed models with 99.34% and 99.76% accuracies for indoor and outdoor datasets, respectively. For Mobile Net models, the result accuracies are 99.27% and 99.68% for indoor and outdoor sets, respectively. The proposed methodology is compared with similar ones in the field of object recognition and image classification, and the comparative study proves the transcendence of the propsed system.
In this paper, the goal of proposed method is to protect data against different types of attacks by unauthorized parties. The basic idea of proposed method is generating a private key from a specific features of digital color image such as color (Red, Green and Blue); the generating process of private key from colors of digital color image performed via the computing process of color frequencies for blue color of an image then computing the maximum frequency of blue color, multiplying it by its number and adding process will performed to produce a generated key. After that the private key is generated, must be converting it into the binary representation form. The generated key is extracted from blue color of keyed image then we selects a c
... Show MoreThis paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spe
... Show MoreWireless Body Area Network (WBAN) is a tool that improves real-time patient health observation in hospitals, asylums, especially at home. WBAN has grown popularity in recent years due to its critical role and vast range of medical applications. Due to the sensitive nature of the patient information being transmitted through the WBAN network, security is of paramount importance. To guarantee the safe movement of data between sensor nodes and various WBAN networks, a high level of security is required in a WBAN network. This research introduces a novel technique named Integrated Grasshopper Optimization Algorithm with Artificial Neural Network (IGO-ANN) for distinguishing between trusted nodes in WBAN networks by means of a classifica
... Show MoreThe aim of the research is to identify the cognitive method (rigidity flexibility) of third-stage students in the collage of Physical Education and Sports Sciences at The University of Baghdad, as well as to recognize the impact of using the McCarthy model in learning some of skills in gymnastics, as well as to identify the best groups in learning skills, the experimental curriculum was used to design equal groups with pre test and post test and the research community was identified by third-stage students in academic year (2020-2021), the subject was randomly selected two divisions after which the measure of cognitive method was distributed to the sample, so the subject (32) students were distributed in four groups, and which the pre te
... Show Moreتناول المقال موضوع استثمار الذكاء الاصطناعي في تحليل البيانات الضخمة داخل المؤسسات العلمية، وركز على توضيح أهمية هذا التكامل في تعزيز الأداء الأكاديمي والبحثي. استعرضت المقالة تعريفات كل من الذكاء الاصطناعي والبيانات الضخمة، وأنواع البيانات داخل المؤسسات العلمية، ثم بينت أبرز التطبيقات العملية مثل التنبؤ بأداء الطلبة، والإرشاد الذكي، وتحليل سلوك المستخدمين، والفهرسة التلقائية. كما ناقشت المقالة التحدي
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreThe structure, optical, and electrical properties of SnSe and its application as photovoltaic device has been reported widely. The reasons for interest in SnSe due to the magnificent optoelectronic properties with other encouraging properties. The most applications that in this area are PV devices and batteries. In this study tin selenide structure, optical properties and surface morphology were investigated and studies. Thin-film of SnSe were deposit on p-Si substrates to establish a junction as solar cells. Different annealing temperatures (as prepared, 125,200, 275) °C effects on SnSe thin films were investigated. The structure properties of SnSe was studied through X-ray diffraction, and the results appears the increasing of the peaks
... Show MoreIn this paper, a design of the broadband thin metamaterial absorber (MMA) is presented. Compared with the previously reported metamaterial absorbers, the proposed structure provides a wide bandwidth with a compatible overall size. The designed absorber consists of a combination of octagon disk and split octagon resonator to provide a wide bandwidth over the Ku and K bands' frequency range. Cheap FR-4 material is chosen to be a substate of the proposed absorber with 1.6 thicknesses and 6.5×6.5 overall unit cell size. CST Studio Suite was used for the simulation of the proposed absorber. The proposed absorber provides a wide absorption bandwidth of 14.4 GHz over a frequency range of 12.8-27.5 GHz with more than %90 absorp
... Show MoreDue to the great evolution in digital commercial cameras, several studies have addressed the using of such cameras in different civil and close-range applications such as 3D models generation. However, previous studies have not discussed a precise relationship between a camera resolution and the accuracy of the models generated based on images of this camera. Therefore the current study aims to evaluate the accuracy of the derived 3D buildings models captured by different resolution cameras. The digital photogrammetric methods were devoted to derive 3D models using the data of various resolution cameras and analyze their accuracies. This investigation involves selecting three different resolution cameras (low, medium and
... Show MoreIn this work, a deep computational study has been conducted to assign several qualities for the graph . Furthermore, determine the amount of the dihedral subgroups in the Held simple group He through utilizing the attributes of gamma.