With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor sets, resulting in four trained models. The test sets are used to evaluate the trained models using many evaluation metrics (accuracy, TPR, FNR, PPR, FDR). Results of Google Net model indicate the high performance of the designed models with 99.34% and 99.76% accuracies for indoor and outdoor datasets, respectively. For Mobile Net models, the result accuracies are 99.27% and 99.68% for indoor and outdoor sets, respectively. The proposed methodology is compared with similar ones in the field of object recognition and image classification, and the comparative study proves the transcendence of the propsed system.
An efficient combination of Adomian Decomposition iterative technique coupled Elzaki transformation (ETADM) for solving Telegraph equation and Riccati non-linear differential equation (RNDE) is introduced in a novel way to get an accurate analytical solution. An elegant combination of the Elzaki transform, the series expansion method, and the Adomian polynomial. The suggested method will convert differential equations into iterative algebraic equations, thus reducing processing and analytical work. The technique solves the problem of calculating the Adomian polynomials. The method’s efficiency was investigated using some numerical instances, and the findings demonstrate that it is easier to use than many other numerical procedures. It has
... Show Moreالمقدمة
ما كان للعرب في تاريخهم الطويل قبل الإسلام، وبعده أن يبدعوا ما أبدعوه في صنع الحضارة وتاريخها ، لولا اعتمادهم أنظمة تربوية سليمة في التنشئة والتعليم، ولولا ان عصورهم قد عرفت مربين ، ومعلمين، وعلماء اسهموا في تقديم نظريات تربوية آثرت في تقدم الفكر التربوي وفي تقدم الإنسان.
فمن الطبيعي أن تكون للعرب تربية منظمة، ولمفكريهم عناية بهذه التربية في كل حقب تاريخهم الطويل، ما د
... Show Moreيعد كتاب(الفهرست) لإبن النديم أول كتاب جامع في القرن الرابع الهجري ،حصر الكتب و المؤلفات العربية و رصدها في مجالات العلم و المعرفة و الثقافة و الفن ،و اللغة والأدب و الشعر بما يكشف عن النشاط الفكري ، و الحياة العقلية و العلمية للعصر .
High peak to average power ration (PAPR) in orthogonal frequency division multiplexing (OFDM) is an important problem, which increase the cost and complexity of high power amplifiers. One of the techniques used to reduce the PAPR in OFDM system is the tone reservation method (TR). In our work we propose a modified tone reservation method to decrease the PAPR with low complexity compared with the conventional TR method by process the high and low amplitudes at the same time. An image of size 128×128 is used as a source of data that transmitted using OFDM system. The proposed method decrease the PAPR by 2dB compared with conventional method with keeping the performance unchanged. The performance of the proposed method is tested with
... Show MoreCyber-attacks keep growing. Because of that, we need stronger ways to protect pictures. This paper talks about DGEN, a Dynamic Generative Encryption Network. It mixes Generative Adversarial Networks with a key system that can change with context. The method may potentially mean it can adjust itself when new threats appear, instead of a fixed lock like AES. It tries to block brute‑force, statistical tricks, or quantum attacks. The design adds randomness, uses learning, and makes keys that depend on each image. That should give very good security, some flexibility, and keep compute cost low. Tests still ran on several public image sets. Results show DGEN beats AES, chaos tricks, and other GAN ideas. Entropy reached 7.99 bits per pix
... Show MoreIn this study, an efficient compression system is introduced, it is based on using wavelet transform and two types of 3Dimension (3D) surface representations (i.e., Cubic Bezier Interpolation (CBI)) and 1 st order polynomial approximation. Each one is applied on different scales of the image; CBI is applied on the wide area of the image in order to prune the image components that show large scale variation, while the 1 st order polynomial is applied on the small area of residue component (i.e., after subtracting the cubic Bezier from the image) in order to prune the local smoothing components and getting better compression gain. Then, the produced cubic Bezier surface is subtracted from the image signal to get the residue component. Then, t
... Show MoreThe area of character recognition has received a considerable attention by researchers all over the world during the last three decades. However, this research explores best sets of feature extraction techniques and studies the accuracy of well-known classifiers for Arabic numeral using the Statistical styles in two methods and making comparison study between them. First method Linear Discriminant function that is yield results with accuracy as high as 90% of original grouped cases correctly classified. In the second method, we proposed algorithm, The results show the efficiency of the proposed algorithms, where it is found to achieve recognition accuracy of 92.9% and 91.4%. This is providing efficiency more than the first method.
Recognizing speech emotions is an important subject in pattern recognition. This work is about studying the effect of extracting the minimum possible number of features on the speech emotion recognition (SER) system. In this paper, three experiments performed to reach the best way that gives good accuracy. The first one extracting only three features: zero crossing rate (ZCR), mean, and standard deviation (SD) from emotional speech samples, the second one extracting only the first 12 Mel frequency cepstral coefficient (MFCC) features, and the last experiment applying feature fusion between the mentioned features. In all experiments, the features are classified using five types of classification techniques, which are the Random Forest (RF),
... Show MoreOver the past few years, ear biometrics has attracted a lot of attention. It is a trusted biometric for the identification and recognition of humans due to its consistent shape and rich texture variation. The ear presents an attractive solution since it is visible, ear images are easily captured, and the ear structure remains relatively stable over time. In this paper, a comprehensive review of prior research was conducted to establish the efficacy of utilizing ear features for individual identification through the employment of both manually-crafted features and deep-learning approaches. The objective of this model is to present the accuracy rate of person identification systems based on either manually-crafted features such as D
... Show More