This study includes using green or biosynthesis-friendly technology, which is effective in terms of low cost and low time and energy to prepare V2O5NPs nanoparticles from vanadium sulfate VSO4.H2O using aqueous extract of Punica Granatum at a concentration of 0.1M and with a basic medium PH= 8-12. The V2O5NPs nanoparticles were diagnosed using several techniques, such as FT-IR, UV-visible with energy gap Eg = 3.734eV, and the X-Ray diffraction XRD was calculated using the Debye Scherrer equation. It was discovered to be 34.39nm, Scanning Electron Microscope (SEM), Transmission Electron Microscopy TEM. The size, structure, and composition of synthetic V2O5NPs were determined using the (EDX) pattern, Atomic force microscopy AFM. The adsorption experiment was successfully conducted on metal ions M (II), such as Co, Ni, and Cu. The results proved removal simultaneously from water using V2O5NPs based on surface shape on the affinity of three metal ions. The adsorption rate of Ni(II) is the highest one in the time scale and conditions of our experiment at all surfaces, while Co(II) and Cu(II) ions are close in magnitude. The removal efficiencies of mixed (M+2 = Co, Ni, and Cu) ions with λmax for Co, Ni, and Cu ions are 510,425 and 814 nm 56.66%, 77.00%, and 27.23%, respectively. The Antimicrobial activity of V2O5NPs in three concentrations, 25%, 50%, and 75%, was tested against Escherichia coli, Staphylococcus aureus, and Candida albicans fungus. The results of the inhibition of vanadium oxide nanoparticles against positive and negative bacteria were compared with the standard drug Amoxicillin and the results of fungus inhibition with the standard drug Metronidazole. It was found that nano-oxide is more effective at 75% concentration.
In this work copper nanopowder was created at different liquid
medias like DDDW, ethylene glycol and Polyvinylpyrrolidone
(PVP). Copper nanopowder prepared using explosion wire process
and investigated the effects of the exploding energy, wire diameter,
the type of liquid on the particle size, and the particles size
distribution. The nanoparticles are characterized by x-ray diffraction,
UV-visible absorption spectroscopy and transmission electron
microscopy (TEM). The x-ray diffraction results reveal that the
nanoparticles continue to routine lattice periodicity at reduced
particle size. The UV-Visible absorption spectrum of liquid solution
for copper nanoparticles shows sharp and single surface Plasmon
r
Database is characterized as an arrangement of data that is sorted out and disseminated in a way that allows the client to get to the data being put away in a simple and more helpful way. However, in the era of big-data the traditional methods of data analytics may not be able to manage and process the large amount of data. In order to develop an efficient way of handling big-data, this work studies the use of Map-Reduce technique to handle big-data distributed on the cloud. This approach was evaluated using Hadoop server and applied on EEG Big-data as a case study. The proposed approach showed clear enhancement for managing and processing the EEG Big-data with average of 50% reduction on response time. The obtained results provide EEG r
... Show MoreThe design of coordination compounds with solvent-responsive optical properties remains a central challenge in molecular photonics. Here, we describe the synthesis and full characterisation of a symmetrical tetradentate diamine ligand, 3,3′-((1,2-phenylenebis(azanediyl))- bis(methanylylidene))bis(pentane-2,4-dione) (H₂L), and its neutral square-planar complexes [M(L)] (M(II) = Co, Ni, Cu). The Cu(II) complex crystallised as [Cu(L)]⋅0.5 (pyrazine), adopting a nearly square-planar geometry (τ₄ = 0.06) in the solid state, as confirmed by single-crystal X-ray diffraction. In DMSO solution, UV–Vis spectra revealed reversible axial coordination of two solvent molecules, driving a transformation to a distorted octahedral geometry. Struc
... Show MoreThis study was aimed to produce AuNPs biologically using Klebsiella pneumoniae and study their synergistic effect with some antibiotics.Technologies of nanoparticles are quick and are employed in many applications in biomedicine. The potential of metallic nanoparticle as an anti-microbial agent is greatly investigated which considered as an alternative method to reduce the challenges of multi-drug resistance microbes. The present study discusses the novel approach to synthesize nanoparticles involving eco-friendly synthesis of gold nanoparticles using Klebsiella pneumoniae and study their effect as antimicrobial spectrum .Also study synergism effect of gold nanoparticles with antibiotic against Acinetobacter baumannii. These approac
... Show MoreZnS:Ce3+ nanoparticles were prepared by a simple microwave irradiation method under mild condition. The starting materials for the synthesis of ZnS:Ce3+ quantum dots were zinc acetate (R & M Chemical) as zinc source, thioacetamide as a sulfur source, cerium chloride as cerium source and ethylene glycol as a solvent. All chemicals were analytical grade products and used without further purification. The quantum dots of ZnS:Ce3+ with cubic structure were characterized by X-ray powder diffraction (XRD), the morphology of the film is seen by scanning electron microscopy (SEM) also by field effect scanning electron microscopy (FESEM) and XRD. Upon exposure to 460 nm light at zero bias voltage, ZnS:Ce3+/p-Si showed a high sensitivity of 4000% an
... Show MoreThe properties of structural and optical of pure and doped nano titanium dioxide (TiO2) films, prepared using chemical spray pyrolysis (CPS) technique, with different nanosize nickel oxide (NiO) concentrations in the range (3-9)wt% have been studied. X-Ray diffraction (XRD) technique where using to analysis the structure properties of the prepared thin films. The results revealed that the structure properties of TiO2 have polycrystalline structure with anatase phase. The parameters, energy gap, extinction coefficient, refractive index, real and imaginary parts were studied using absorbance and transmittance measurements from a computerized ultraviolet visible spectrophotometer (Shimadzu UV-1601 PC) in the wavelength
... Show More