Preferred Language
Articles
/
bsj-8046
Solving the Hotdog Problem by Using the Joint Zero-order Finite Hankel - Elzaki Transform
...Show More Authors

This paper is concerned with combining two different transforms to present a new joint transform FHET and its inverse transform IFHET. Also, the most important property of FHET was concluded and proved, which is called the finite Hankel – Elzaki transforms of the Bessel differential operator property, this property was discussed for two different boundary conditions, Dirichlet and Robin. Where the importance of this property is shown by solving axisymmetric partial differential equations and transitioning to an algebraic equation directly. Also, the joint Finite Hankel-Elzaki transform method was applied in solving a mathematical-physical problem, which is the Hotdog Problem. A steady state which does not depend on time was discussed for each obtained general solution, i.e. in the boiling and cooling states. To clarify the idea of temperature rise and fall over the time domain given in the problem, some figures were drawn manually using Microsoft PowerPoint. The obtained results confirm that the proposed transform technique is efficient, accurate, and fast in solving axisymmetric partial differential equations.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue May 01 2018
Journal Name
Sci.int.(lahore)
The Effect of Wavelet Coefficient Reduction on Image Compression Using DWT and Daubechies Wavelet Transform
...Show More Authors

FG Mohammed, HM Al-Dabbas, Science International, 2018 - Cited by 2

View Publication
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Compare Estimate Methods of Parameter to Scheffʼe Mixture Model By Using Generalized Inverse and The Stepwise Regression procedure for Treatment Multicollinearity Problem
...Show More Authors

Mixture experiments are response variables based on the proportions of component for this mixture. In our research we will compare the scheffʼe model with the kronecker model for the mixture experiments, especially when the experimental area is restricted.

     Because of the experience of the mixture of high correlation problem and the problem of multicollinearity between the explanatory variables, which has an effect on the calculation of the Fisher information matrix of the regression model.

     to estimate the parameters of the mixture model, we used the (generalized inverse ) And the Stepwise Regression procedure

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Sep 30 2018
Journal Name
Journal Of Theoretical And Applied Information Technology
FINGERPRINTS MATCHING USING THE ENERGY AND LOW ORDER MOMENT OF HAAR WAVELET SUBBANDS
...Show More Authors

Fingerprint recognition is one among oldest procedures of identification. An important step in automatic fingerprint matching is to mechanically and dependably extract features. The quality of the input fingerprint image has a major impact on the performance of a feature extraction algorithm. The target of this paper is to present a fingerprint recognition technique that utilizes local features for fingerprint representation and matching. The adopted local features have determined: (i) the energy of Haar wavelet subbands, (ii) the normalized of Haar wavelet subbands. Experiments have been made on three completely different sets of features which are used when partitioning the fingerprint into overlapped blocks. Experiments are conducted on

... Show More
View Publication Preview PDF
Publication Date
Fri Aug 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Using Bayesian method to estimate the parameters of Exponential Growth Model with Autocorrelation problem and different values of parameter of correlation-using simulation
...Show More Authors

We have studied Bayesian method in this paper by using the modified exponential growth model, where this model is more using to represent the growth phenomena. We focus on three of prior functions (Informative, Natural Conjugate, and the function that depends on previous experiments) to use it in the Bayesian method. Where almost of observations for the growth phenomena are depended on one another, which in turn leads to a correlation between those observations, which calls to treat such this problem, called Autocorrelation, and to verified this has been used Bayesian method.

The goal of this study is to knowledge the effect of Autocorrelation on the estimation by using Bayesian method. F

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 18 2014
Journal Name
Desalination And Water Treatment
Removal of zinc from contaminated groundwater by zero-valent iron permeable reactive barrier
...Show More Authors

Scopus (22)
Crossref (24)
Scopus Clarivate Crossref
Publication Date
Tue Jun 04 2024
Journal Name
International Journal Of Operational Research
Pascal's triangle graded mean defuzzification approach for solving fuzzy assignment models by using pentagonal fuzzy numbers
...Show More Authors

The fuzzy assignment models (FAMs) have been explored by various literature to access classical values, which are more precise in our real-life accomplishment. The novelty of this paper contributed positively to a unique application of pentagonal fuzzy numbers for the evaluation of FAMs. The new method namely Pascal's triangle graded mean (PT-GM) has presented a new algorithm in accessing the critical path to solve the assignment problems (AP) based on the fuzzy objective function of minimising total cost. The results obtained have been compared to the existing methods such as, the centroid formula (CF) and centroid formula integration (CFI). It has been demonstrated that operational efficiency of this conducted method is exquisitely develo

... Show More
View Publication
Scopus Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Solving Optimal Control Linear Systems by Using New Third kind Chebyshev Wavelets Operational Matrix of Derivative
...Show More Authors

In this paper, a new third kind Chebyshev wavelets operational matrix of derivative is presented, then the operational matrix of derivative is applied for solving optimal control problems using, third kind Chebyshev wavelets expansions. The proposed method consists of reducing the linear system of optimal control problem into a system of algebraic equations, by expanding the state variables, as a series in terms of third kind Chebyshev wavelets with unknown coefficients. Example to illustrate the effectiveness of the method has been presented.

View Publication Preview PDF
Crossref
Publication Date
Sat Dec 02 2017
Journal Name
Al-khwarizmi Engineering Journal
Speech Signal Compression Using Wavelet And Linear Predictive Coding
...Show More Authors

A new algorithm is proposed to compress speech signals using wavelet transform and linear predictive coding. Signal compression based on the concept of selecting a small number of approximation coefficients after they are compressed by the wavelet decomposition (Haar and db4) at a suitable chosen level and ignored details coefficients, and then approximation coefficients are windowed by a rectangular window and fed to the linear predictor. Levinson Durbin algorithm is used to compute LP coefficients, reflection coefficients and predictor error. The compress files contain LP coefficients and previous sample. These files are very small in size compared to the size of the original signals. Compression ratio is calculated from the size of th

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Solution of Nonlinear High Order Multi-Point Boundary Value Problems By Semi-Analytic Technique
...Show More Authors

In this paper, we present new algorithm for the solution of the nonlinear high order multi-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of multi- point boundary value problems.

View Publication Preview PDF
Crossref
Publication Date
Sat Jul 20 2024
Journal Name
Journal Of Interdisciplinary Mathematics
Analytical solutions via coupled Elzaki adomian decomposition method for some applications
...Show More Authors

An efficient combination of Adomian Decomposition iterative technique coupled Elzaki transformation (ETADM) for solving Telegraph equation and Riccati non-linear differential equation (RNDE) is introduced in a novel way to get an accurate analytical solution. An elegant combination of the Elzaki transform, the series expansion method, and the Adomian polynomial. The suggested method will convert differential equations into iterative algebraic equations, thus reducing processing and analytical work. The technique solves the problem of calculating the Adomian polynomials. The method’s efficiency was investigated using some numerical instances, and the findings demonstrate that it is easier to use than many other numerical procedures. It has

... Show More
Scopus (4)
Scopus