This paper is concerned with combining two different transforms to present a new joint transform FHET and its inverse transform IFHET. Also, the most important property of FHET was concluded and proved, which is called the finite Hankel – Elzaki transforms of the Bessel differential operator property, this property was discussed for two different boundary conditions, Dirichlet and Robin. Where the importance of this property is shown by solving axisymmetric partial differential equations and transitioning to an algebraic equation directly. Also, the joint Finite Hankel-Elzaki transform method was applied in solving a mathematical-physical problem, which is the Hotdog Problem. A steady state which does not depend on time was discussed for each obtained general solution, i.e. in the boiling and cooling states. To clarify the idea of temperature rise and fall over the time domain given in the problem, some figures were drawn manually using Microsoft PowerPoint. The obtained results confirm that the proposed transform technique is efficient, accurate, and fast in solving axisymmetric partial differential equations.
Removal of solar brown and direct black dyes by coagulation with two aluminum based
coagulants was conducted. The main objective is to examine the efficiency of these
coagulants in the treatment of dye polluted water discharged from Al-Kadhymia Textile
Company (Baghdad-Iraq). The performance of these coagulants was investigated through
jar test by comparing dye percent removal at different wastewater pH, coagulant dose,
and initial dye concentration. Results show that alum works better than PAC under acidic
media (5-6) and PAC works better under basic media (7-8) in the removal of both solar
brown and direct black dyes. Higher doses of PAC were required to achieve the
maximum removal efficiency under optimum pH co
Cloud point extraction is a simple, safe, and environmentally friendly technique for preparing many different kinds of samples. In this review, we discussed the CPE method and how to apply it to our environmental sample data. We also spoke about the benefits, problems, and likely developments in CPE. This process received a great deal of attention during preconcentration and extraction. It was used as a disconnection and follow-up improvement system before the natural mixtures (nutrients, polybrominated biphenyl ethers, pesticides, polycyclic sweet-smelling hydrocarbons, polychlorinated compounds, and fragrant amines) and inorganic mixtures were examined and many metals like (silver, lead, cadmium, mercury, and so on). We also find
... Show MoreThis work presents the modeling of the electrical response of monocrystalline photovoltaic module by using five parameters model based on manufacture data-sheet of a solar module that measured in stander test conditions (STC) at radiation 1000W/m² and cell temperature 25 . The model takes into account the series and parallel (shunt) resistance of the module. This paper considers the details of Matlab modeling of the solar module by a developed Simulink model using the basic equations, the first approach was to estimate the parameters: photocurrent Iph, saturation current Is, shunt resistance Rsh, series resistance Rs, ideality factor A at stander test condition (STC) by an ite
... Show MoreIn our article, three iterative methods are performed to solve the nonlinear differential equations that represent the straight and radial fins affected by thermal conductivity. The iterative methods are the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM) to get the approximate solutions. For comparison purposes, the numerical solutions were further achieved by using the fourth Runge-Kutta (RK4) method, Euler method and previous analytical methods that available in the literature. Moreover, the convergence of the proposed methods was discussed and proved. In addition, the maximum error remainder values are also evaluated which indicates that the propo
... Show MorePhysics and applied mathematics form the basis for understanding natural phenomena using differential equations depicting the flow in porous media, the motion of viscous liquids, and the propagation of waves. These equations provide a thorough study of physical processes, enhancing the understanding of complex applications in engineering, technology, and medicine. This paper presents novel approximate solutions for the Darcy-Brinkmann-Forchheimer moment equation, the Blasius equation and the FalknerSkan equation with initial / boundary conditions by using two iterative methods: the variational iteration method and the optimal variational iteration method. The variational iteration method is effectively developed by adding a control paramete
... Show MoreBipedal robotic mechanisms are unstable due to the unilateral contact passive joint between the sole and the ground. Hierarchical control layers are crucial for creating walking patterns, stabilizing locomotion, and ensuring correct angular trajectories for bipedal joints due to the system’s various degrees of freedom. This work provides a hierarchical control scheme for a bipedal robot that focuses on balance (stabilization) and low-level tracking control while considering flexible joints. The stabilization control method uses the Newton–Euler formulation to establish a mathematical relationship between the zero-moment point (ZMP) and the center of mass (COM), resulting in highly nonlinear and coupled dynamic equations. Adaptiv
... Show More