The field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabets are detected using the mathematical algorithm of the morphological gradient. After that, the images are passed to the CNN architecture. The available database of Arabic handwritten alphabets on Kaggle is utilized for examining the model. This database consists of 16,800 images divided into two datasets: 13,440 images for training and 3,360 for validation. As a result, the model gives a remarkable accuracy equal to 99.02%.
This research sheds light on the morphological structure of nouns and verbs in the novel "ASTONISHMENT" by the novelist Aharon Applefield by analysing selected models from the novel in a morphological analysis in order to identify the most important morphological features of this structure according to a statistical analytical approach.
The morphological structure is the main pillar of the linguistic structure of the literary text. Morphology is the science that studies the word, by which its structure and original letters are known, and the change that has occurred to it. The aesthetics of the fictional text is reflected in this structure, through which the writer conveys his ideas and narrations to the reader. The research
... Show MoreThe Arabic Grammar between Originality and Sufficiency
In this study, the effect of the combination of micro steel fibers and additives (calcium hydroxide and sodium carbonate) on the size of cracks formation and healing them were investigated. This study aims to apply the use of self-healing phenomenon to repair cracks and to enhance the service life of the concrete structures. Micro steel fibers straight type were used in this research with 0.2% and 0.4% by volume of concrete. A weight of 20 and 30 kg/m3 of Ca(OH)2 and 2 and 3 kg/m3 of Na2CO3 were used as a partial cement replacement. The results confirm that the concrete cracks were significantly self-healed up to 30 days re-curing. Cracks width up to 0.2 mm were comp
... Show MoreBackground: The aim of this in vitro study was to evaluate and compare the microleakage between Vertise Flow T M composite material and other conventional (Filtek Z250, riva light cure and SDR) composite materials when restoring CII mesial box only cavity at gingival margin through die penetration test Materials and methods: Forty maxillary first premolars were prepared with class II box design only cavities. Samples were divided into four groups of ten teeth according to material used: group I (FiltekZ250 only). Group II (SDR+FiltekZ250). Group III (Vertise Flow +FiltekZ250). Group IV (Riva light cure+ FiltekZ250). After 24 hrs. immersion in 2% in methylene blue, samples were sectioned and micro leakage was estimated. Results: None of the
... Show MoreIn this paper, we made comparison among different parametric ,nonparametric and semiparametric estimators for partial linear regression model users parametric represented by ols and nonparametric methods represented by cubic smoothing spline estimator and Nadaraya-Watson estimator, we study three nonparametric regression models and samples sizes n=40,60,100,variances used σ2=0.5,1,1.5 the results for the first model show that N.W estimator for partial linear regression model(PLM) is the best followed the cubic smoothing spline estimator for (PLM),and the results of the second and the third model show that the best estimator is C.S.S.followed by N.W estimator for (PLM) ,the
... Show MoreThis study investigates the impact of spatial resolution enhancement on supervised classification accuracy using Landsat 9 satellite imagery, achieved through pan-sharpening techniques leveraging Sentinel-2 data. Various methods were employed to synthesize a panchromatic (PAN) band from Sentinel-2 data, including dimension reduction algorithms and weighted averages based on correlation coefficients and standard deviation. Three pan-sharpening algorithms (Gram-Schmidt, Principal Components Analysis, Nearest Neighbour Diffusion) were employed, and their efficacy was assessed using seven fidelity criteria. Classification tasks were performed utilizing Support Vector Machine and Maximum Likelihood algorithms. Results reveal that specifi
... Show MoreThe objective of this study is to highlight the skills of office managers and it's impact on the effectiveness of time management in the institutes and faculties of middle technical university and a group of cognitive and practical aims. The managers skills forms mthe modern trend and the main source to provide organizations with highly skilled managers with distinctive performance and because of the sharp changes in the environment which today's organizations works in it , business organizations generally and managers especially realise the importance of time management and it's role in achieving competitive advantage . The problem of this study raised from this point which reflect the extent of departments managers realisation
... Show More