The field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabets are detected using the mathematical algorithm of the morphological gradient. After that, the images are passed to the CNN architecture. The available database of Arabic handwritten alphabets on Kaggle is utilized for examining the model. This database consists of 16,800 images divided into two datasets: 13,440 images for training and 3,360 for validation. As a result, the model gives a remarkable accuracy equal to 99.02%.
Police play an important role in any society. Where they maintain public order by stopping and deterring crime and bringing criminals to justice. In order to achieve these objectives, they have certain means of law (search, arrest, use of force that may be lethal in some cases). However, such means may be misused in a way that harms members of society such as (Exceeding the Scope of a search warrant, violation of privacy of individuals, False Imprisonment, Excessive use of force, Sudden Deaths in custody, Sexual Assault and Harassment, Failure to respond for Domestic violence calls), which raises the civil liability of police officers and their agencies for such damage. Police officers may even abuse their characteristics even outside offic
... Show MoreToday, the success or failure of organizations depends to possess the wisdom of their managers promised that the key to organizational success of the business environment, making the right decisions, and create the ability to work and think towards discrimination of products and services the organization . Seek this research to investigation the relationship between the wisdom management and differentiation strategy for service operations . It was a test of that relationship in light of the results of the analysis of the data collected through the questionnaire distributed on a sample from (98) Director Mangers, head of department and head of division in the General Establishment of Civil Aviation . The research used descriptive st
... Show MoreAbstract
Binary logistic regression model used in data classification and it is the strongest most flexible tool in study cases variable response binary when compared to linear regression. In this research, some classic methods were used to estimate parameters binary logistic regression model, included the maximum likelihood method, minimum chi-square method, weighted least squares, with bayes estimation , to choose the best method of estimation by default values to estimate parameters according two different models of general linear regression models ,and different s
... Show MoreThe objective of the present study is to determine the effect of Kaolin as a fuel oil additive to minimize the fireside corrosion of superheater boiler tubes of ASTM designation (A213-T22) by increasing the melting point of the formed slag on the outside tubes surface, through the formation of new compounds with protective properties to the metal surface. The study included measuring corrosion rates at different temperatures with and without additive use with various periods of time, through crucible test method and weight loss technique.
A mathematical model represents the relation between corrosion rate and the studied variables, is obtained using statistical regression analysis. Using this model,
... Show MoreThis work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it
... Show MoreTraffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show MoreAbstract: This article is a comparative analysis of the concept and types of homonyms in Russian and Arabic. Homonyms are lexical units that have the same sound but different meanings. The study of homonymy in different languages can help reveal the features of the semantic structure and syntactic rules of each language. The article discusses the main aspects of homonymy in Russian and Arabic, as well as a comparative analysis of the types of homonyms that exist in both languages. The study includes an analysis of the semantic meanings of homonyms, their use in context, and possible differences in syntactic features that may affect their interpretation and perception by native speakers of these languages. The purpose of the article is to id
... Show MoreSome species, such as the Eurasian Collared-Dove (S. decaocto) are fast expanding around the planet, while others, such as the European Turtle-Dove (S. turtur), are experiencing precipitous population declines. Climate change, habitat loss, greater cultivated areas, and hunting pressure are the major threats to the diversity of Streptopelia. A few species require urgent conservation action. Priority for subsequent research should be to redress outstanding taxonomic uncertainties, ascertain the effect of climate change on distributions, and put in place conservation measures for declining taxa. We provide here a detailed review on how it is possible to understand the diversity of Streptopelia and how such an understanding can con
... Show MoreIt is well known that the spread of cancer or tumor growth increases in polluted environments. In this paper, the dynamic behavior of the cancer model in the polluted environment is studied taking into consideration the delay in clearance of the environment from their contamination. The set of differential equations that simulates this epidemic model is formulated. The existence, uniqueness, and the bound of the solution are discussed. The local and global stability conditions of disease-free and endemic equilibrium points are investigated. The occurrence of the Hopf bifurcation around the endemic equilibrium point is proved. The stability and direction of the periodic dynamics are studied. Finally, the paper is ended with a numerical simul
... Show More